检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:项杨 杨晋生 XIANG Yang;YANG Jin-sheng(School of Microelectronics,Tianjin University,Tianjin 300072,China)
出 处:《信号处理》2018年第10期1228-1236,共9页Journal of Signal Processing
摘 要:扩展孔径的非均匀阵列用于二维波达方向估计时,即使无相同的方位角或俯仰角也存在具有相同的方向余弦的情况,即奇异点问题。为了解决奇异点问题,所提出的算法构建了四个延时互相关矩阵,并根据对应的信号子空间构造对角矩阵。因此,算法可以通过联合对角化方法得到自动配对的低精度无模糊的方向余弦估计值以及高精度模糊的方向余弦估计值。最后,使用解模糊方法得到高精度无模糊的方向余弦估计值。所提出的算法解决了非均匀阵列二维波达方向估计存在的奇异点问题,且在欠定条件下具有良好的估计性能。仿真结果验证了所提出算法的有效性。The singularity problem always exists in two-dimensional direction-of-arrival estimation for the non-uniform array with extended aperture.That is a case where the same direction cosine is present,even without the same azimuth or elevation.To solve the singularity problem,the proposed algorithm constructed four cross-correlation matrices with different delays and formed joint diagonalization structure according to the corresponding signal subspace.Therefore,the proposed algorithm can obtain the high-variance unambiguous direction cosines and the low-variance ambiguous cosines that are automatically paired by the joint diagonalization method.Finally,the low-variance unambiguous direction cosines are obtained using the ambiguity resolved technique.The proposed method has solved the singularity problem existing in two-dimensional direction-of-arrival estimation for non-uniform array,and performs well in the underdetermined case.Numerical simulation results are presented to demonstrate the effectiveness of the proposed algorithm.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.30.59