检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王海云[1] 张岩[1] 闫富荣 陈雁[2] 杨莉萍 常乾坤 张再驰 陈茜 袁清芳[1] WANG Hai-yun;ZHANG Yan;YAN Fu-rong;CHEN Yan;YANG Li-ping;CHANG Qian-kun;ZHANG Zai-chi;CHEN Qian;YUAN Qing-fang(State Grid Beijing Electric Power Company,Beijing 100031,China;Beijing Zhongdianpuhua Technology Co.Ltd,Beijing 100085,China)
机构地区:[1]国网北京市电力公司,北京100031 [2]北京中电普华信息技术有限公司,北京100085
出 处:《电力需求侧管理》2018年第6期31-35,共5页Power Demand Side Management
摘 要:"煤改电"工程改变了电网的负荷特性,对线损造成了重大影响。为降低"煤改电"工程造成的负面影响,进而提高供电单位的效益,以实施"煤改电"工程后的低压台区为研究对象,提出了一种基于深度神经网络的线损异常识别方法。该方法将异常点检测、EM算法及深度神经网络进行结合,建立了线损异常识别模型,预判未实施"煤改电"台区的各项实施后指标是否可能导致线损异常,从而为"煤改电"工程提供指导性建议,以便采取相应措施进行有效降损。The coal-to-electricity project changes the load characteristic of the power grid,and causes a significant impact on the line loss.In order to reduce the negative influence caused by coal-to-electricity project and improve the efficiency of the power supply unit,the low voltage district after the implementation of the coal-to-electricity project is studied,and then a method of line loss anomaly identification based on deep neural network is proposed.The proposed method establishes a model of line loss outlier identi-fication combing the anomaly detection,EM algorithm and deep neural network.The model can predict whether the indicators of the low voltage district may cause the line loss be abnormal after implementing coal-to-electricity project,and then supply the guid-ance suggestions for the following coal-to-electricity project,so as to take corresponding measures to reduce the line loss.
关 键 词:“煤改电”工程 深度神经网络 线损异常识别 异常点检测
分 类 号:TK018[动力工程及工程热物理] TK019
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.168