检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱竑祯 王纬波[2] 高存法[1] 殷学文[2] ZHU Hong-zhen;WANG Wei-bo;GAO Cun-fa;YIN Xue-wen(State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,China;National Key Laboratory on Ship Vibration&Noise,China Ship Scientific Research Center,Wuxi 214082,China)
机构地区:[1]南京航空航天大学机械结构力学及控制国家重点实验室,南京210016 [2]中国船舶科学研究中心船舶振动噪声重点实验室,江苏无锡214082
出 处:《船舶力学》2018年第11期1364-1375,共12页Journal of Ship Mechanics
基 金:江苏省自然科学基金-青年基金(BK20160201)
摘 要:文章提出了面内功能梯度材料圆形薄板受轴对称载荷弯曲变形的理论求解方法,并通过有限元编程计算验证了该理论解的有效性。假定杨氏模量沿半径方向连续梯度变化,而泊松比的变化忽略不计,基于薄板小挠度弯曲理论,分别求解不含孔的圆板和含圆孔的圆板弯曲问题。运用文中的计算方法,将结果退化至普通薄板,能完全吻合经典解;对于给定的一种功能梯度材料参数变化函数,理论解与有限元方法计算结果一致。该文提出的方法在计算效率和精度方面都有一定的优越性,可为未来功能梯度材料在动态分析及主动控制方面的应用提供理论支持。A theoretical method for solving the bending of fuctionally graded thin circular plates with in-plane stiffness gradient subjected to axisymmetric loads is presented,and then finite element method is used to verify the validity of the previous theoretical solution.The Young’s modulus varies gradually along the direction of radius,and the change of Poisson’s ratio is neglected,the bending of circular plates with or without a circular hole is calculated based on the classic theory of small deflection bending of thin plates.By simplifying the solution to normal plates,its result coincides with the classic results.Given the parameter function of fuctionally graded material,the theoretical solution can also coincide with the finite element results.Computational methods presented in this paper have superiorities in efficiency and accuracy in order to provide proof for the next step of dynamic analysis and active control.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7