检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YU Xiao-hui ZHANG Yu-feng ZHANG Yan HE Zhong-lu DONG Sheng-ming MA Xue-lian YAO Sheng 于晓慧;张于峰;张彦;贺中禄;董胜明;马学莲;姚胜
机构地区:[1]School of Environmental Science and Engineering, Tianjin University [2]School of Architecture, Tianjin University
出 处:《Journal of Central South University》2018年第11期2754-2765,共12页中南大学学报(英文版)
基 金:Project (2015CB251403) supported by the National Key Basic Research Program of China(973)
摘 要:Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.本文设计、开发了两种新型高温近共沸混合工质M1和M2。实验研究了不同工况下M1和M2两种工质的性能并进行对比分析。测试结果验证了M1和M2作为新型高温工质的可行性和可靠性。此外,本文还应用支持向量机及BP人工神经网络模型对高温热泵性能进行预测。预测结果表明:对于制热量和输入功率的预测,SVM-RBF、SVM-LF和BP三种模型均具有较高的预测精度,对于性能系数的预测,SVM-RBF模型具有较好的预测精度。最后,本文使用支持向量机模型对M1和M2两种工质的潜力进行评估。评估结果表明,M1的高温热泵在产热温度为130℃时仍具有良好的性能。
关 键 词:high-temperature heat pump experimental performance support vector machine back propagation neural network performance prediction
分 类 号:TU83[建筑科学—供热、供燃气、通风及空调工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4