基于图像集拓扑中心的群体配准方法  被引量:4

A Groupwise Registration Method Based on Topology Center of Images

在线阅读下载全文

作  者:王远军[1] 刘玉[2] WANG Yuan-jun;LIU Yu(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Department of Radiology,Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200011,China)

机构地区:[1]上海理工大学医疗器械与食品学院,上海200093 [2]上海交通大学医学院附属第九人民医院放射科,上海200011

出  处:《波谱学杂志》2018年第4期457-464,共8页Chinese Journal of Magnetic Resonance

基  金:上海市自然科学基金资助项目(18ZR1426900)

摘  要:传统的图像配准通常指定一幅参考图像在配准过程中保持不变,将另一幅图像变换到参考图像空间,使得两幅图像在空间上互相匹配,从而可以精确比较两者之间的差异.针对多幅个体差异较大的图像配准问题,如果指定一幅作为参考,将其他图像配准到参考图像空间,则会引入该幅参考图像的个体形状偏差,从而影响最终的对比结果.为此,本文首先介绍了目前针对该问题的主要解决方法,然后提出了基于图像集拓扑中心的群体配准方法——TopologyCenter.为验证所提出的群体配准方法的性能,通过使用国外公开的数据集,详细比较了本文提出的方法与当前两种主要方法的群体配准结果的差异.实验结果表明,本文提出的方法具有更小的群体配准偏差,群体配准结果更好;同时,在对实验结果的评价中,本文还提出了一种简捷的群体偏差度量指标.Image registration is often used to transform images from different subjects into the same spatial space to ensure more accurate comparisons.With the traditional image registration methods,one image is usually specified as the reference image,while the other images are transformed into the space of the reference image.However,the image randomly selected as the reference image may have significant deviations from the group mean in datasets with large individual differences,causing registration biases and affecting the final results of groupwise comparisons.In this paper,a groupwise registration method based on the topology center of the image set was proposed.With the same open datasets,the performance of the proposed method was compared to that of two widely used traditional methods.The experimental results demonstrated that the proposed method had smaller groupwise registration bias and better registration results.The paper also proposed a simple measure for evaluating groupwise registration bias.

关 键 词:医学影像 拓扑中心 对称配准 群体配准 

分 类 号:O482.53[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象