抗污染攻击的流内安全网络纠错编码  被引量:6

Intra-Session Linear Network Coding Against Pollution Attacks

在线阅读下载全文

作  者:韩晓冬 高飞[1] HAN Xiao-dong;GAO Fei(School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)

机构地区:[1]北京理工大学信息与电子学院,北京100081

出  处:《北京理工大学学报》2018年第11期1182-1187,1204,共7页Transactions of Beijing Institute of Technology

基  金:国家自然科学基金资助项目(61271258)

摘  要:传统的网络路由并不能达到多播网络中"最大流-最小割"定义的Shannon容量限,而网络编码很好地解决了上述问题,在增大吞吐量的同时还可以均衡网络负载,提高带宽利用率.但是当网络中存在恶意攻击时会引入错误数据包,在线性网络编码操作下会带来数据包的"错误扩散",不仅影响网络性能,还会造成资源的严重浪费.因此如何在优化网络传输性能的同时提高通信网络的安全性成为目前亟待解决的问题.本文采用基于同态校验的线性网络纠错编码机制进行差错控制,拟解决多播网络中的污染攻击问题,对安全性能以及传输性能进行了分析.仿真结果表明基于同态校验的网络纠错编码能够在不破坏数据包编码规则的前提下及时地进行错误的检测和纠正,得到较好的差错控制性能,能够对抗网络中恶意节点引起的污染攻击问题.Traditional network routing cannot reach Shannon capacity limit of the“maximum flow-minimum cut”theory in multicast network,but network coding is a very good solution to these problems,it can increase the throughput also balance network load,and improve bandwidth utilization ratio.But malicious attacks in network can introduce error packets,it will bring packets of“error propagation”problem under the linear network coding and waste a large number of resources.Therefore,how to improve the security of communication network while optimizing network transmission performance is an urgent problem to be solved.In this paper,the homomorphism of the classic linear block code in linear network coding was proposed for the case of binary field and its extensions for network error-control,in order to resolve the problem of pollution attacks in multicast network.And the safety performance and transmission performance were analyzed.Experimental results demonstrate that homomorphic error-control codes for linear network coding can detect and correct error packets timely based on not destroy packet encoding rules.It can get good performance in error control,improve network performance and save the cost of network consumption.

关 键 词:线性网络编码 污染攻击 同态校验 网络纠错编码 

分 类 号:TN911.2[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象