基于因子分析和改进DEA交叉模型的中国“一流大学”建设高校科研效率评价  被引量:16

Evaluation on the Scientific Research Efficiency of "First-Class Universities" Building University in China Based on Factor Analysis and the Improved DEA Cross Model

在线阅读下载全文

作  者:王宁[1] 王鲁玉[1] WANG Ning;WANG Lu-yu(Business School,Zhengzhou University,Zhengzhou 450001,China)

机构地区:[1]郑州大学商学院,河南郑州450001

出  处:《统计与信息论坛》2018年第12期37-44,共8页Journal of Statistics and Information

基  金:河南省教育科学"十三五"规划项目<基于质量功能展开的高校研究生教育质量保障研究>(2018-JKGHYB-0009)

摘  要:高校科研效率提升是当前中国高等院校科研创新工作亟待解决的核心问题。针对传统DEA模型在高校科研效率评价中存在的有效决策单元无法全排序、交叉效率值不唯一等问题,引入TOPSIS思想,建立基于理想决策单元的DEA交叉模型,并采用熵权法集结各决策单元效率值,构建改进的DEA交叉模型;运用因子分析构建评价指标体系,通过消除指标间相关性以满足DEA模型对指标技术要求;采用改进的DEA交叉模型对中国40所"一流大学"建设高校科研效率进行评价,研究结果表明40所"一流大学"建设高校的整体科研效率水平偏低,还存在较大的改进空间。Improving the efficiency of scientific research in colleges and universities is the core problem that needs to be solved urgently in China.Aiming to solve the problem of the traditional DEA model that the inability to complete the ordering of effective decision units and the non-uniqueness of cross efficiency existed in the university research efficiency evaluation,the TOPSIS idea was introduced to establish the DEA cross model based on ideal decision unit.In addition,entropy weight method was used to gather the efficiency values of each decision unit to build the improved DEA cross model.At the same time,factor analysis was used to construct the evaluation index system,and the correlation between indicators was eliminated to meet the technical requirements of DEA model for indicators.Finally,the improved DEA cross model was used to evaluate the research efficiency of 40"first-class universities"building university in China.The results show that the overall scientific research efficiency of 40"first-class universities"building university is low and there is a great room for improvement.

关 键 词:“一流大学”建设高校 科研效率 TOPSIS 熵权法 改进DEA交叉模型 因子分析 

分 类 号:F224[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象