检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李明晓 张恒才[1] 仇培元[1] 程诗奋 陈洁[1] 陆锋[1,2,3] LI Mingxiao;ZHANG Hengcai;QIU Peiyuan;CHENG Shifen;CHEN Jie;LU Feng(State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;University of Chinese Academy of Sciences,Beijing 100049,China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
机构地区:[1]中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101 [2]中国科学院大学,北京100049 [3]江苏省地理信息资源开发与利用协同创新中心,江苏南京210023
出 处:《测绘学报》2018年第12期1660-1669,共10页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(41771436;41571431;41771476);国家重点研发计划(2016YFB0502104);中国科学院重点项目(ZDRW-ZS-2016-6-3)~~
摘 要:预测移动对象未来某时刻位置能够为城市规划与管理、城市公共安全、城市应急指挥等提供重要的决策依据,也可为个性化信息推荐、广告定投等基于位置的服务应用提供技术支持。已有预测算法多采用固定格网剖分,位置相近轨迹点常被划分至不同格网,使得潜在轨迹模式被忽略,降低了预测精度。此外,已有预测模型不能有效学习到长序列轨迹有效信息,造成长期依赖问题。本文提出一种基于模糊长短时记忆神经网络(fuzzy long short term memory network,Fuzzy-LSTM)模型的移动对象轨迹预测算法,引入模糊轨迹概念解决固定格网剖分所导致的尖锐边界问题,并对传统LSTM进行改进,综合利用移动对象历史轨迹邻近性和周期性出行特征,提高移动对象轨迹位置预测精度。最后,采用某市10万用户连续15个工作日的移动通讯信令轨迹数据集对方法进行试验分析。结果表明,本文方法在30min预测周期内的预测平均准确率达到83.98%,较经典的Na6ve-LSTM预测模型和NLPMM预测模型分别提高了4.36%和6.95%。Current studies on trajectory prediction have two limitations.Spatial division approaches in most existing studies lead to sharp boundary problem of predicting methods.On the other hand,most of traditional predicting models such as Markov could only use a few latest historical locations,making long-term prediction inaccurate.To overcome these limitations,a location prediction method based on deepFuzzy-LSTM Network is proposed.The method employs a long short term memory based network to solve the long-term dependencies problem.By defining the fuzzy-based trajectory and the improved LSTM cell structure,our method solves the sharp boundary problem caused by space partition.It also considers both period and closeness of movement patterns in making prediction.We compare classical NLPMM,Na ve-LSTM and Fuzzy-LSTM methods with a cell signaling dataset consisting of the continuous trajectories of one hundred thousand city residents in15workdays.Results show that the proposed Fuzzy-LSTM method gets a precision of83.98%,6.95%higher than the NLPMM model and4.36%higher than Na ve-LSTM model.
关 键 词:位置预测 模糊空间划分 LSTM 轨迹数据挖掘 深度学习
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.13.165