检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘吉宴 Chi-Yen Liu(Division of Philosophy,Graduate School of Letters,Faculty of Letters,Kyoto University;Institute of Philosophy of Mind and Cognition,National Yang Ming University)
机构地区:[1]京都大学大学院文学研究科哲学研究室 [2]阳明大学心智哲学研究所
出 处:《逻辑学研究》2018年第4期56-82,共27页Studies in Logic
摘 要:亚当斯论题往往被解读为:在P(A)> 0的条件下,直陈条件句"如果A,B"的主观概率等同于条件概率P (B|A)。许多人指出这样的解读会遭受贫乏性结果的挑战,因此建议我们放弃亚当斯论题;然而,本论文论证刘吉宴(2014)对亚当斯论题的解读可以避免贫乏性结果的攻击。刘吉宴(2014)区分了直陈条件句为真的概率与可断说性,并对亚当斯论题提出以下的解读:在P(A)> 0的条件下,简单直陈条件句"如果A,B"的可断说性等同于条件概率P(B|A),同时在三值语意学的观点下,对此提出一个形式上的证明。刘吉宴(2014)虽然说明了这个结果如何避免刘易士的第一个贫乏性结果,但没有详细讨论这如何避免其它的贫乏性结果。本论文将进一步扩展该文对亚当斯论题的想法,并论证其它文献中的贫乏性结果,也可以从这个扩展后的想法获得恰当的解决。"Adams’ thesis" is often interpreted as the claim that the subjective probability of an indicative conditional A → B equals the corresponding conditional probability P(B | A). Many scholars have shown that this interpretation will be attacked by triviality results, so they reject Adams’ thesis. This paper argues that under the interpretation of Adams’ thesis in Liu (2014), triviality results could be avoided. Liu (2014) distinguished the probability of an indicative conditional from the assertability of an indicative conditional, and interpreted Adams’ thesis as: the assertability of a simple indicative conditional A → B equals the corresponding conditional probability P(B | A), provided P(A) > 0, where it has been shown that how such interpretation could escape Lewis’ first triviality result, but it did not show how to escape other triviality results in details.This paper will further expand the aforementioned ideas about Adams’ thesis, and argues that such interpretation indeed can escape all triviality results on the market.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.186.84