检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:颜中军[1] Zhongjun Yan(School of Humanities,Hunan University of Science and Technology)
机构地区:[1]湖南科技大学人文学院
出 处:《逻辑学研究》2018年第4期114-124,共11页Studies in Logic
基 金:湖南省社会科学成果评审委员会项目(XSP18YBZ126);湖南省教育厅重点资助项目(16A077)
摘 要:经典逻辑恪守组合原则,假定量词之间相互依赖,致使前置的重叠量词之间呈现线性特征,即域窄的存在量词受制于域宽的全称量词。如果考虑量词的独立性,允许重叠量词之间具有某种偏序关系,那么将产生所谓的分枝量词。研究表明,我们不仅可以在形式语言层面上构造分枝量化式(可行性),并且确实需要用分枝量化式来刻画某些自然语句(必要性)。对分枝量化式做不同的语义解释将带来不同的形而上学后果。如果将分枝量化式等价于某种类型的司寇伦函数式,那么将面临复杂的嵌套结构并承诺相应的二阶语义实体。如果采用更为直观的博弈论语义学,那么可以避免直接谈论二阶语义实体和使用复杂的嵌套结构。但无论采取何种解释方案,分枝量化式与经典量化式都将面临相同的本体论承诺。因为逻辑公式的本体论承诺与其语义解释有关,而与公式本身无关。所以,蒯因对分枝量词的本体论指责是不能成立的。分枝量词逻辑是对经典逻辑的实质修正,而绝非任意的背离,具有许多新奇特性和深刻的哲学意蕴,其发展潜力不容小觑。Classical logic persist in principle of compositionality and assumption of dependence between quantifiers,resulting in linear characteristic of prefixed quantifiers.That is,the exist quantifier whose domain is narrow is subject to the universal quantifier whose domain is wide.The so-called branching quantifiers will occur if we consider the independence of quantifiers,allowing a partial order relation between prefixed quantifiers.It has been shown that we can not only construct branching quantification in formal language(feasibility),but we also need to describe some natural statements in the form of branching quantification(necessity).Different interpretations of the branching quantifiers will bring about different metaphysical consequences.If the branching quantification is equivalent to a certain type of Skolemization Normal Form,then it has a corresponding second-order semantics feature and bears the corresponding ontological cost.But if we take the Game-theoretic semantics,we can avoid the abstract semantic objects and use non-nesting structures.In a word,the branching quantification logic will face the same ontological commitment as the classical logic.So,Quine's critic for the ontology of branching quantifiers is wrong.The logic of branching quantifiers presents a serious challenge to the classical logic.It proves that the logic can be modified again.Logic of branching quantifiers have many non-classical characters and profound philosophical significance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30