检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李会 苏欣荣 袁新 Hui Li;Xin-rong Su;Xin Yuan
出 处:《风机技术》2018年第6期1-6,共6页Chinese Journal of Turbomachinery
基 金:National Natural Science Foundation of China(No.51506107,No.51476082)
摘 要:With the increase of blade loading, the loss prediction model used in the design process needs refinement and improvement to meet the high-performance design. For the turbine design, most of existing profile loss models are developed for subsonic and transonic cases and their accuracy in high Mach number flow are limited. The primary research interest of this work is to study the flow mechanism of turbine cascade with high Mach number and the related profile loss. In this work, a transonic turbine cascade with strong shock wave is numerically studied with Reynolds Averaged Navier-Stokes(RANS). Also, to overcome the limitations of RANS modeling, Delayed Detached Eddy Simulation(DDES) type high-fidelity turbulence simulation is also conducted. Based on the numerical results, the primary loss sources, including the boundary layer loss, the trailing loss and the shock loss are analyzed and results from existing loss models are assessed. The results from current work may help to develop refinement profile loss model for the design of turbine cascade working in the high Mach number regime.With the increase of blade loading, the loss prediction model used in the design process needs refinement and improvement to meet the high-performance design. For the turbine design, most of existing profile loss models are developed for subsonic and transonic cases and their accuracy in high Mach number flow are limited. The primary research interest of this work is to study the flow mechanism of turbine cascade with high Mach number and the related profile loss. In this work, a transonic turbine cascade with strong shock wave is numerically studied with Reynolds Averaged Navier-Stokes(RANS). Also, to overcome the limitations of RANS modeling, Delayed Detached Eddy Simulation(DDES) type high-fidelity turbulence simulation is also conducted. Based on the numerical results, the primary loss sources, including the boundary layer loss, the trailing loss and the shock loss are analyzed and results from existing loss models are assessed. The results from current work may help to develop refinement profile loss model for the design of turbine cascade working in the high Mach number regime.
关 键 词:TRANSONIC CASCADE Boundary Layer LOSS Trailing Edge LOSS Shock Wave RANS DDES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.38.146