机构地区:[1]School of Resources and Civil Engineering, Northeastern University [2]Shaanxi Key Laboratory for the Comprehensive Utilization of Tailings Resources, Shangluo University [3]School of Mining Engineering, University of Science and Technology Liaoning
出 处:《International Journal of Minerals,Metallurgy and Materials》2019年第1期1-10,共10页矿物冶金与材料学报(英文版)
基 金:financially supported by the National Natural Science Foundation of China(No.51704057);the China Postdoctoral Science Foundation(No.2017M621153);the Postdoctoral Science Foundation of Northeastern University(No.20170312);the Fundamental Research Funds for the Central Universities(No.N170104018);the Open Fund Project of Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources,China(No.2017SKY-WK012)
摘 要:In this study, pentlandite was selectively separated from serpentine using magnetic coating technology by adjusting and optimizing pH, stirring speeds, magnetic field intensities, and dosages of sodium hexametaphosphate(SHMP) and sodium oleate(SO). A magnetic concentrate with Ni grade of 20.8% and Ni recovery of 80.5% was attained under the optimized operating conditions. Considering the above, the adsorption behaviors of SHMP and SO and the surface properties of minerals after the magnetic coating were studied by Fourier transform infrared(FTIR) spectroscopy, X-ray diffraction(XRD), and scanning electron microscopy(SEM). The results show that magnetite was preferentially coated on the pentlandite surfaces and sparingly coated on the serpentine surfaces in the presence of SHMP and SO. Furthermore, calculations by Derjaguin-Landau-Verwey-Overbeek(DLVO) theory indicate that the preferential adsorption of magnetite on the pentlandite surfaces is due to the presence of a hydrophobic interaction between the magnetite and pentlandite, which is much stronger than the interaction between magnetite and serpentine.In this study, pentlandite was selectively separated from serpentine using magnetic coating technology by adjusting and optimizing pH, stirring speeds, magnetic field intensities, and dosages of sodium hexametaphosphate(SHMP) and sodium oleate(SO). A magnetic concentrate with Ni grade of 20.8% and Ni recovery of 80.5% was attained under the optimized operating conditions. Considering the above, the adsorption behaviors of SHMP and SO and the surface properties of minerals after the magnetic coating were studied by Fourier transform infrared(FTIR) spectroscopy, X-ray diffraction(XRD), and scanning electron microscopy(SEM). The results show that magnetite was preferentially coated on the pentlandite surfaces and sparingly coated on the serpentine surfaces in the presence of SHMP and SO. Furthermore, calculations by Derjaguin-Landau-Verwey-Overbeek(DLVO) theory indicate that the preferential adsorption of magnetite on the pentlandite surfaces is due to the presence of a hydrophobic interaction between the magnetite and pentlandite, which is much stronger than the interaction between magnetite and serpentine.
关 键 词:DISPERSANT COAGULANT MAGNETIC COATING MAGNETIC separation hydrophobic interaction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...