检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京信息工程大学计算机与软件学院,江苏省南京市210044
出 处:《电子技术与软件工程》2018年第24期5-6,共2页ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING
摘 要:近年来,随着深度学习的火热发展,以深度卷积神经网络为代表的监督学习已经在计算机视觉等领域上发挥出了巨大的作用,然而用深度学习去解决无监督学习受到的关注却比较少,直道有人将卷积神经网络引入到生成式模型上,提出了卷积神经网络与生成对抗网络相结合的深度卷积生成对抗网络。卷积神经网络的加入使得其具有了一定的结构性约束,与传统机器学习算法相比在无监督学习的方向上展现出了更加强大的性能,拥有更好的生成效果,特别是在图像生成方面,通过合理的训练甚至可以达到以假乱真的效果。本文主要就是介绍这样一种无监督的深度神经网络——深度卷积生成对抗网络。
关 键 词:深度学习 深度卷积生成对抗网络 无监督学习
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229