基于自相似性与多任务高斯过程回归的单帧图像超分辨率重建  被引量:9

Single image super-resolution reconstruction algorithm based on image self-similarity and multi-task Gaussian process regression

在线阅读下载全文

作  者:李键红 吴亚榕[2] 吕巨建 LI Jian-hong;WU Ya-rong;L Ju-jian(Laboratory of Language Engineering and Computing,Guangdong University of Foreign Studies, Guangzhou 510006, China;Science and Technology Department,Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;School of Computing, Guangdong Polytechnic Normal University, Guangzhou 510665, China)

机构地区:[1]广东外语言外贸大学语言工程与计算实验,广东广州510006 [2]仲恺农业工程学院仲恺科技服务公司,广东广州510225 [3]广东技术师范学院计算机学院,广东广州510665

出  处:《光学精密工程》2018年第11期2814-2826,共13页Optics and Precision Engineering

基  金:广东省自然科学基金资助项目(No.2017A030310618);广东省科技计划资助项目(No.2016A020210131);广东外语外贸大学语言工程与计算实验室项目(No.LEC2016ZBK004)

摘  要:在单帧图像超分辨率问题中,基于高斯过程回归的超分辨率算法没有挖掘相似图像片间的关联关系或者无差别地用相似图像片来扩充训练集合,都会导致重建的高分辨率图像中存在明显的噪声和伪影。对此提出了一种基于多任务高斯过程回归的超分辨率算法。该算法通过引入多任务学习思想,将输入的低分辨率图像进行分片处理,把每一个图像片的超分辨率过程视为一个任务。在对相似任务建模的过程中,通过最优化求解的参数集合来体现任务间的共性及差异,从而使模型的泛化能力和预测精度得以提高,在重建高分辨率图像清晰锐利的同时,噪声和伪影受到明显抑制。用常见的测试图像以及公开的图像测试集合进行的大量试验表明该算法在主观评价和客观评价两个方面均优于同类型算法及当前经典算法,峰值信噪比较其它常见超分辨率算法可提高约0.5dB。In the domain of single image super-resolution,algorithms based on Gaussian process regression neither exploit the association relationships among similar patches,nor do they discriminate between these patches with similar properties to augment the volume of the training set,which leads to obvious noise and artifacts in reconstructed high-resolution images.To overcome this problem,a new super-resolution algorithm based on multi-task Gaussian process regression is proposed.This algorithm introduces the idea of multi-task learning to partition the input low-resolution image into overlapped patches and considers the super-resolution process of each patch as a task.In the process of modeling similar tasks,the parameter set obtained by optimal solving for representing the commonness and difference gives generalization ability,improves prediction accuracy improved,makes the reconstructed high-resolution image clear and sharp,and suppresses noise and artifacts significantly.A large number of experiments to process common testing images and a public image test set subjectively and objectively demonstrate that this algorithm is superior to similar state of the art algorithms,and the peak signal to noise ratio is approximately0.5dB higher than that of other common super-resolution algorithms.

关 键 词:单帧图像超分辨率 多任务学习 高斯过程回归 图像自相似性 最优化估计 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象