检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李华[1] 吴翰 薛梅 徐世武[2] LI Hua;WU Han;XUE Mei;XU Shiwu(Land Rehabilitation Center of Ministry of Land and Resources,Beijing100035,China;China University of Geosciences,Wuhan 430074,China;Wuhan Bureau of State Land Supervision,Wuhan 430077,China)
机构地区:[1]国土资源部土地整治中心,北京100035 [2]中国地质大学(武汉),武汉430074 [3]国家土地督察武汉局,武汉430077
出 处:《遥感信息》2018年第6期132-138,共7页Remote Sensing Information
摘 要:鉴于中高分辨率影像最大似然分类对一些类型的建筑和裸土容易发生相互错分(易混地物),直接影响土地督察应用高分一号多光谱数据对大型工程项目的发现和阶段认定,提出了一种基于最大似然分类综合优化的精度提升方法。通过样本过滤和正态化提升样本的典型性,同时获得地物的先验概率,然后进行最大似然预分类,再通过混淆矩阵依据先验概率分布和像元的地物识别概率对像元归属进行调整,进一步提高分类精度。通过对比实验验证,综合改进后建筑和裸土的用户精度均有11%以上的提升,总体精度提升9%以上。Building and filling have a high probability of mutual misclassification in the largest likelihood classification(MLC)of GF-1image,and they are easily mixed ground objects,which directly affect the judgment of construction status.This paper proposes a comprehensive optimization based on MLC accuracy improvement method.Through the sample filter and normal promotion sample representativeness,firstly,it obtains the feature prior probability.Secondly,it applies maximum likelihood classification.And then, through the confusion matrix based on the prior probability distribution and the like yuan feature recognition probability adjust like yuan belonging,it further improves the classification accuracy.By comparison experiments,the user's accuracy of building and filling was improved by more than 11%respectively,and the overall accuracy was increased by more than 9%.
关 键 词:土地督察 易混地物 最大似然分类 样本典型性 先验概率 综合改进
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3