检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张明[1] 彭伟 王斐[1] 冯小香[1] 王义安 ZHANG Ming;PENG Wei;WANG Fei;FENG Xiao-xiang;WANG Yi-an(Tianjin Research Institute for Water Transport Engineering,Key Laboratory of Engineering Sediment,Ministry of Transport,Tianjin 300456,China)
机构地区:[1]交通运输部天津水运工程科学研究所工程泥沙交通行业重点实验室,天津300456
出 处:《水道港口》2018年第6期683-689,共7页Journal of Waterway and Harbor
基 金:国家自然科学基金项目(51809130)
摘 要:数学模型和物理模型是水运工程研究中常用的两种手段。文章以沙溪口水电站坝下航道整治工程为实例,研究了数学模型和物理模型结果的相似性和差异性问题。结果表明,数学模型和物理模型总体上都能准确反应航道的水位、水深、流速等通航条件,但在局部问题上往往仍具有一定差别,采用相对变化值进行比较可以有效降低误差;物理模型可以直观观察航道内滑梁水、剪刀水等碍航水流流态,数学模型也可根据航道纵向流速、横向流速及流速方向等综合特征来识别不良水流。对于复杂水工模型,基于两种手段相互配合的复合模型研究是提高研究效率、节约研究费用、保证研究精度的有效方法。Mathematical models and physical models are two commonly used methods in water transport engineering research. Based on the waterway regulation downstream the Shaxikou dam,the similarity and difference of mathematical model and physical model results have been studied. Results show that the mathematical model and the physical model can accurately reflect the water level,water depth,current velocity and other navigation conditions ,but the local problems often still have a certain difference,and the use of relative changes in the value of the comparison can effectively reduce the error; physical model can visually observe scissors-like flow, over-ledge flow and other adverse flow patterns in the channel,which can also been identified by mathematical model results analysis of the channel longitudinal flow rate,lateral flow velocity and flow direction and other comprehensive characteristics. For the complex hydrological model,the compound model of the two methods is effective to improve the research efficiency,save the research cost and ensure the precision of the research.
分 类 号:U617[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143