基于改进PSO-BP网络的配电网故障选线与测距  被引量:18

Fault line selection and location for distribution network based on improved PSO-BP neural network

在线阅读下载全文

作  者:李升健 黄灿英[2] 陈艳[2] LI Sheng-jian;HUANG Can-ying;CHEN Yan(Electric Science Research Institute,State Grid Jiangxi Electric Power Limited Company,Nanchang 330096,China;School of Science and Technology,Nanchang University,Nanchang 330029,China)

机构地区:[1]国网江西省电力有限公司电力科学研究院,南昌330096 [2]南昌大学科学技术学院,南昌330029

出  处:《沈阳工业大学学报》2019年第1期6-11,共6页Journal of Shenyang University of Technology

基  金:江西省教育厅科学技术研究项目(GJJ151504;GJJ151505)

摘  要:针对人工智能算法在解决配电网故障选线和测距问题时容易陷入局部最优解并难以满足精确性和鲁棒性要求的问题,提出了一种基于改进粒子群优化神经网络的配电网故障选线与测距算法.该算法结合混沌优化算法和粒子群优化算法得到收敛能力更强的粒子群优化算法,通过提取配电网的零序电压与电流的暂态及稳态特征来构成特征向量,并分别使用训练集训练改进粒子群优化神经网络算法,从而能更精确地预测配电网的故障线路及其距离.仿真测试结果表明,所提出的算法能获得更精确的选线和测距结果,具有一定的实用性.In order to solve the problems that during the fault line selection and location for the distribution network,the artificial intelligence algorithms are easily trapped into the local optimal solutions and are difficult to meet the requirements in both accuracy and robustness,a fault line selection and location algorithm for distribution network based on the improved particle swarm optimization( PSO) neural network was proposed. The proposed algorithm combines the chaos optimization and PSO algorithms to obtain a new PSO algorithm with stronger convergence ability. Through extracting the characteristics of both transient and steady states of zero-sequence voltage and current of distribution network,the feature vector was formed,and the PSO neural network algorithm was trained and improved with the training set. Therefore,the fault line and location of distribution network can be predicted more accurately. The results of simulation test show that the proposed algorithm can obtain more accurate line selection and location results,and has certain practicality.

关 键 词:粒子群优化 神经网络 混沌优化 配电网 故障选线 故障测距 暂态 稳态 最优解 

分 类 号:TM76[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象