结合YOLO检测和语义分割的驾驶员安全带检测  被引量:18

Driver Seat Belt Detection Based on YOLO Detection and Semantic Segmentation

在线阅读下载全文

作  者:吴天舒 张志佳[1] 刘云鹏[2] 郭婉妍 王子韬 Wu Tianshu;Zhang Zhijia;Liu Yunpeng;Guo Wanyan;Wang Zitao(School of Software,Shenyang University of Technology,Shenyang 110870;Department of Optical-Electronics and Information Processing,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016)

机构地区:[1]沈阳工业大学软件学院,沈阳110870 [2]中国科学院沈阳自动化研究所光电信息技术研究室,沈阳110016

出  处:《计算机辅助设计与图形学学报》2019年第1期126-131,共6页Journal of Computer-Aided Design & Computer Graphics

基  金:国家自然科学基金(61540069);装发部共用技术课题项目(Y6k4250401)

摘  要:为了通过交通监控自动检测驾驶员是否佩戴安全带,提出一种结合目标检测与语义分割的驾驶员安全带检测算法.首先通过设计轻量化目标检测算法完成驾驶员区域快速定位;然后利用经过剪枝加速的语义分割模型对驾驶员区域进行分割,得出安全带连通域;最后通过判断安全带连通域面积检测驾驶员是否佩戴安全带.在驾驶员区域定位和安全带检测2个数据集上进行训练和测试,实验结果表明,驾驶员区域定位算法在精准度为99.96%时速度为73帧/s,安全带检测算法在准确率为94.87%时速度为305帧/s;该算法在兼顾速度的同时具有较好的精准度.In order to detect whether a driver wears a seat belt automatically through traffic monitor,a driver’s seat belt detection algorithm based on object detection and semantic segmentation was proposed.Firstly,a lightweight target detection algorithm was designed to locate the driver’s area quickly.Then,the driver’s area was segmented by the semantic segmentation model accelerated with pruning,and the connected area of the seat belt was obtained.Finally,the area of the connected area of the seat belt was judged to detect whether the driver worn the seat belt.The speed of the algorithm is 305 frames/s when the accuracy is 94.87%.The experimental results show that the algorithm has good accuracy while taking into account the speed.

关 键 词:安全带检测 语义分割 交通视频监控 深度学习 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象