检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱小毅 张宇献[1] 张志峰[1] 王建辉[2] QIAN Xiao-yi;ZHANG Yu-xian1y;ZHANG Zhi-feng;WANG Jian-hui(School of Electrical Engineering,Shenyang University of Technology,Shenyang Liaoning 110870,China)
机构地区:[1]沈阳工业大学电气工程学院,辽宁沈阳110870 [2]东北大学信息科学与工程学院,辽宁沈阳110819
出 处:《控制理论与应用》2019年第1期32-42,共11页Control Theory & Applications
基 金:国家自然科学基金项目(61102124;61603263);辽宁省自然科学基金项目(2015020064);辽宁省教育厅项目(LQGD2017035)资助~~
摘 要:利用智能优化算法挖掘模糊分类规则能够解决模糊前件参数和无关项的组合优化问题,但也存在依赖初始规则以及更新过程无指导等缺陷,导致分类精度难以保证.为此,本文以二型模糊规则分类系统为框架,采用模糊聚类得到代表性样本并启发式的产生初始规则,以量子等位基因形式对规则进行编码生成多初始种群,根据基因的优良性,以变尺度变异操作实现等位基因的指导性进化.在此基础上,利用矛盾规则重构机制,提高模糊规则分类系统的精度.将所提出算法与FH–GBML–IVFS–Amp算法和GAGRAD算法进行了分类精度对比,并在不同噪声水平下,与C4.5算法、朴素贝叶斯分类器和BP神经网络进行分类鲁棒性比较,实验结果表明所提出算法具有较好分类精度与鲁棒性.Employing intelligent optimization algorithm to mine fuzzy classification rule,this solves a combinatorial optimization problem on fuzzy antecedent parameters and don’t care variables.However,there are disadvantages such as the dependence of the initial rules and the lack of guidance in the updating process,which leads to it difficult to ensure classification accuracy.In this paper,the type–2 fuzzy rule-based classification system is employed as a framework,the fuzzy clustering is used to obtain the representative sample and the heuristic generation is used to generate initial fuzzy rules.The multiple initial populations are obtained by quantum alleles coding for each rule.Considering the superiority of genes,the variable scale mutation operation is used to guide the allele evolution in order to preserve the elitist population and individuals.And then,the contradictory rule is defined and the contradictory rule reconstruction is used to improve the accuracy of the fuzzy rules classification system.The classification accuracy of proposed algorithm is compared with both FH–GBML–IVFS–Amp and the GAGRAD algorithm,and classification robustness is compared with C4.5 algorithm,Naive Bayesian classifier and BP neural network at different class noise levels.The experimental results show that the classification accuracy and classification robustness of proposed algorithm are superior to compared algorithms.
关 键 词:基于模糊规则的分类系统 量子进化算法 多种群量子编码 变尺度变异 矛盾规则重构
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] O159[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3