检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭铎 周建国[1] 羿舒文 江昊[1] PENG Duo;ZHOU Jianguo;YI Shuwen;JIANG Hao(School of Electronic Information,Wuhan University,Wuhan Hubei 430072,China)
出 处:《计算机应用》2019年第1期154-159,共6页journal of Computer Applications
基 金:国家863计划项目(2014AA01A707)~~
摘 要:针对传统的自回归积分移动平均(ARIMA)模型和长短时记忆(LSTM)单元在基站流量预测中没有利用基站(BS)间合作关系的问题,提出一种利用由用户群体在不同基站下访问产生的基站合作关系的流量预测(TPBC)算法。首先,通过基站之间的合作关系构建基站合作网络,并对此合作网络进行社区划分得到基站社区;然后,通过格兰杰因果关系检验方法寻找与目标基站同一社区且关系最紧密的若干基站,作为目标基站的合作基站;最后,使用LSTM和词嵌入层(Embedding)搭建混合神经网络,并根据目标基站和合作基站的流量信息进行流量预测。实验结果表明,TPBC在基站流量预测上的均方根误差(RMSE)相比ARIMA和LSTM分别减小了29. 19%和27. 47%。TPBC能有效提高基站流量预测准确率,在流量卸载和绿色节能等领域具有重要意义。Concerning the problem that AutoRegressive Integrated Moving Average( ARIMA) model and Long Short-Term Memory( LSTM) unit do not utilize the collaboration between Base Stations( BSs) in traffic prediction, a new method called Traffic Prediction based on Space Collaboration( TPBC) which uses the collaboration between BSs produced by users was proposed. Firstly, a BS cooperative network was constructed based on the collaboration between BSs and then divided into multiple communities. Next, the cooperative BSs, which have the closest relationships with the target BS in the same community, were found via Granger causality test. Finally, a hybrid neural network was constructed by LSTM and Embedding layer, and the historial traffic of target BS and each cooperative BS was utilized for traffic prediction of target BS. The experimental results show that the Root Mean Square Error( RMSE) of TPBC is reduced by 29. 19% and 27. 47% compared with ARIMA and LSTM respectively. It shows that TPBC has the capability of improving the accuracy of BS traffic prediction effectively, which benefits traffic offloading and energy saving.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31