机构地区:[1]School of Chemical Engineering and Technology,Tianjin University [2]National Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University
出 处:《Transactions of Tianjin University》2019年第2期124-142,共19页天津大学学报(英文版)
基 金:High-performance Computing Center of Tianjin University;supported by the Natural Science Foundation of China(No.21606164)
摘 要:Flow-induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Fluidelastic instability is the most critical flow-induced vibration mechanism in heat exchangers. Both experimental and computational studies conducted to determine fluidelastic instability were presented in this paper. In the experiment, a water channel was built, and a closely packed normal square tube array with a pitch-to-diameter ratio of 1.28 was tested, and significant fluidelastic instability was observed. A numerical model adopting large-eddy simulation and moving mesh was established using ANSYS CFX, and results showed good agreement with the experimental findings. The vibration behaviors of fluidelastic instability were discussed, and results showed that the dominant vibration direction of the tubes changed from streamwise to transverse beyond a critical velocity. A 180° phase lag between adjacent tubes was observed in both the experiment and simulations. Normal and rotated square array cases with pitch-to-diameter ratios of 1.28 and 1.5 were also simulated. The results of this study provide better insights into the vibration characteristics of a square tube array and will help improve the fundamental research and safety design of heat exchangers.Flow-induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Fluidelastic instability is the most critical flow-induced vibration mechanism in heat exchangers. Both experimental and computational studies conducted to determine fluidelastic instability were presented in this paper. In the experiment, a water channel was built, and a closely packed normal square tube array with a pitch-to-diameter ratio of 1.28 was tested, and significant fluidelastic instability was observed. A numerical model adopting large-eddy simulation and moving mesh was established using ANSYS CFX, and results showed good agreement with the experimental findings. The vibration behaviors of fluidelastic instability were discussed, and results showed that the dominant vibration direction of the tubes changed from streamwise to transverse beyond a critical velocity. A 180° phase lag between adjacent tubes was observed in both the experiment and simulations. Normal and rotated square array cases with pitch-to-diameter ratios of 1.28 and 1.5 were also simulated. The results of this study provide better insights into the vibration characteristics of a square tube array and will help improve the fundamental research and safety design of heat exchangers.
关 键 词:Fluidelastic INSTABILITY DOMINANT vibration direction Phase LAG SQUARE TUBE array Heat EXCHANGER
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...