检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金祎[1] 万晓榆[2] 徐立 JIN Yi;WAN Xiaoyu;XU Li(Beijing Union University,Beijing 100101,China;School of Economics and Management,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Beijing Zhongheng Haifeng Information System Technology CO,LTD,Beijing 100045,China)
机构地区:[1]北京联合大学,北京100101 [2]重庆邮电大学经济管理学院,重庆400065 [3]北京中恒海丰信息系统技术有限公司,北京100045
出 处:《重庆邮电大学学报(社会科学版)》2019年第1期102-109,共8页Journal of Chongqing University of Posts and Telecommunications(Social Science Edition)
摘 要:目前,对微观信用评价理论和方法的研究基本上是针对条件、关系等因素在相对确定的状态下进行的,主要通过运用运筹学、回归分析、管理科学与数量经济学建立研究理论和方法,如博弈理论、数据包络理论以及区块链理论。在大数据环境中,微观信用的影响因素一般情况下是动态的,客观上动态的、非确定性、小概率、非正负相关的逻辑关系不明显,而随机性因素会对信用问题造成巨大影响。文章在国内外最新研究的基础上,指出在大数据环境下微观信用机制的研究方法和方向,并提出了研究路径。At present, the research on micro credit evaluation theory and method is basically based on the study of conditions and relationship factors in a relatively determined state, mainly through the application of operational research, regression analysis, management science and quantitative economics, such as game theory, data envelopment theory and blockchain theory, these theories and methods are also constantly developing and improving. In the big data environment, the influencing factors of micro credit are generally dynamic, objectively dynamic, non-deterministic, small probability, non-positive and negative, and logically insignificant. Random factors have a huge impact on credit issues. Based on the latest research at home and abroad as well as under the background of big data, this paper is trying to clarify the research methods and the directions of micro-credit mechanisms, and further propose the research approach.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145