Seismic design of Xiluodu ultra-high arch dam  被引量:4

Seismic design of Xiluodu ultra-high arch dam

在线阅读下载全文

作  者:Ren-kun Wang Lin Chen Chong Zhang 

机构地区:[1]PowerChina Chengdu Engineering Corporation Limited, Chengdu 610072, China

出  处:《Water Science and Engineering》2018年第4期288-301,共14页水科学与水工程(英文版)

基  金:supported by the Program of Study on the Standard of Overall Safety Control of High Arch Dam of PowerChina Co.,Ltd.(Grant No.DJ-ZDXM-2014-19)

摘  要:The 285.5 m-high Xiluodu Arch Dam is located in a seismic region along the Jinsha River in China, where the horizontal components of peak ground accelerations for design and checking earthquakes have been estimated to be 0.355 g and 0.423 g, respectively( g is the gravitational acceleration). The ground motion parameters of design and checking earthquakes are defined by exceedance probabilities of 2% over 100 years and 1% over 100 years, respectively. The dam shape was first selected and optimized through static analysis of the basic load combinations, and then adjusted after taking into account the seismic loads. The dam should be operational during and after the design earthquake with or without minor repairs, and maintain local and global stabilities during an extreme earthquake. Both linear elastic dynamic analysis and nonlinear dynamic analysis considering radiation damping, contraction joints, and material nonlinearity were conducted to assess the stress in the arch dam.The dynamic analysis shows that the maximum dynamic compressive stresses are less than the allowable levels, while the area with tensile stress over the limit is less than 15% of the dam surface and the maximum contraction openings range from 10 mm to 25 mm. The arch dam has sufficient earthquake-resistance capacity and meets the safety requirements. Nevertheless, steel reinforcement has been provided at the dam toe and in the zones of high tensile stress on the dam surface out of extra precaution.The 285.5 m-high Xiluodu Arch Dam is located in a seismic region along the Jinsha River in China, where the horizontal components of peak ground accelerations for design and checking earthquakes have been estimated to be 0.355 g and 0.423 g, respectively( g is the gravitational acceleration). The ground motion parameters of design and checking earthquakes are defined by exceedance probabilities of 2% over 100 years and 1% over 100 years, respectively. The dam shape was first selected and optimized through static analysis of the basic load combinations, and then adjusted after taking into account the seismic loads. The dam should be operational during and after the design earthquake with or without minor repairs, and maintain local and global stabilities during an extreme earthquake. Both linear elastic dynamic analysis and nonlinear dynamic analysis considering radiation damping, contraction joints, and material nonlinearity were conducted to assess the stress in the arch dam.The dynamic analysis shows that the maximum dynamic compressive stresses are less than the allowable levels, while the area with tensile stress over the limit is less than 15% of the dam surface and the maximum contraction openings range from 10 mm to 25 mm. The arch dam has sufficient earthquake-resistance capacity and meets the safety requirements. Nevertheless, steel reinforcement has been provided at the dam toe and in the zones of high tensile stress on the dam surface out of extra precaution.

关 键 词:Seismic design Nonlinear dynamic analysis Dam shape optimization Seismic strengthening Xiluodu arch dam 

分 类 号:TV[水利工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象