基于双稀疏优化的空域错误隐藏  

Spatial Error Concealment Based on Coupled Sparse Optimization

在线阅读下载全文

作  者:严静文 肖晶 高戈[1,2] YAN Jingwen;XIAO Jing;GAO Ge(National Engineering Research Center for Multimedia Software,Wuhan University,Wuhan 430072,China;School of Computer,Wuhan University,Wuhan 430072,China)

机构地区:[1]武汉大学国家多媒体软件工程技术研究中心,武汉430072 [2]武汉大学计算机学院,武汉430072

出  处:《计算机工程》2019年第2期245-249,共5页Computer Engineering

基  金:国家自然科学基金(61471271)

摘  要:现有空域错误隐藏算法通常利用线性插值或者常规稀疏表达恢复丢失像素,但线性插值在恢复不平滑图像时因邻域信息不一致导致恢复图像模糊,而常规稀疏表达因字典构建不当造成丢失像素重建效果较差。为此,提出一种改进的空域错误隐藏算法,采用动态阈值搜索潜在集合和模板集合提高字典构建精度,利用典型相关分析获得双稀疏优化的初值,通过稀疏重建恢复丢失像素。实验结果表明,与现有主流算法相比,该算法的峰值信噪比至少提高1. 23 dB,具有较好的错误隐藏效果。Linear interpolation algorithm or conventional sparse representation algorithm are used to recover the lost pixels currently.However,linear interpolation restores image blur due to inconsistent neighborhood information when restoring unsmooth images.For the conventional sparse representation algorithm,improper dictionary construction will result in a poor recovered image quality.To solve these problem,an improved spatial error concealment algorithm is proposed.The proposed algorithm optimizes the process of potential set and template set search by means of dynamic threshold searching,which improves the precision of the constructed dictionary.It can obtain the value of double sparse optimization using Canonical Correlation Analysis(CCA),and recover lost pixels by sparse reconstruction.Experimental results show that the proposed algorithm improves the Peak Signal to Noise Ratio(PSNR) by at least 1.23 dB compared with the current mainstream algorithm,and has a good error hiding effect.

关 键 词:空域错误隐藏 线性插值 I帧丢失 字典构建 稀疏优化 

分 类 号:TP37[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象