检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄荣庚 龙静[2] 潘志刚[2] 陈焕新[1] 刘江岩[1] 刘佳慧 李正飞 Huang Ronggeng;Long Jing;Pan Zhigang;Chen Huanxin;Liu Jiangyan;Liu Jiahui;Li Zhengfei(Shool of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan,430074,China;Guangzhou Metro Corporation,Guangzhou,510030,China)
机构地区:[1]华中科技大学能源与动力工程学院,武汉430074 [2]广州市地下铁道总公司,广州510030
出 处:《制冷学报》2019年第1期88-93,共6页Journal of Refrigeration
基 金:国家自然科学基金(51576074;51328602)资助项目;华中科技大学自主创新研究基金(5003120005)项目资助~~
摘 要:本文通过对时间序列的研究分析,提出一种基于自回归移动平均(ARMA)模型来预测地铁站环控系统能耗的方法。对采集的地铁站环控系统能耗数据进行平稳性检验和白噪声检验;依据数据样本的自相关系数、偏自相关系数及AIC准则确定模型最优参数,建立可有效预测地铁站环控系统能耗的ARMA模型;采用4种方法对拟合模型的有效性进行检验;利用平均绝对误差(MAE)和均方根误差(RMSE)对模型拟合效果进行分析。结果表明,该方法能够有效提取能耗数据中有用的信息,MAE和RMSE分别可达0.101和0.470,对于地铁站环控系统能耗预测具有较高的拟合精度。This paper proposes an energy consumption-prediction method for metro heating,ventilation and air-conditioning(HVAC)systems based on an auto-regressive moving average(ARMA)model using a time-series data analysis.Firstly,stationarity analysis and white-noise analysis(also known as pure stochastic analysis)were carried out on the collected energy-consumption data from actual metro HVAC systems.Secondly,optimal model parameters were determined using the autocorrelation function(ACF),and partial autocorrelation function(PACF)and Akaike information criterion(AIC).Finally,an effective energy consumption-prediction model was established.Four different methods were employed to test the effectiveness of the established ARMA model.Meanwhile,two performance indexes,namely,mean absolute error(MAE)and root mean square error(RMSE),were adopted to evaluate its performance in terms of fitting the observed energy consumption data.The results demonstrate that the proposed method based on the ARMA model could extract useful information from the energy data and and achieve the MAE and RMSE to be and 0.470 respectively,which proves it effective for energy consumption prediction of metro HVAC systems.
关 键 词:时间序列 ARMA模型 地铁站环控系统 能耗预测
分 类 号:TU831[建筑科学—供热、供燃气、通风及空调工程] U231.5[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3