Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers  被引量:1

Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers

在线阅读下载全文

作  者:Sheng Xiang Dong-Dong Zhou Li-Dong Feng Xin-Chao Bian Gao Li Xue-Si Chen Tian-Chang Wang 

机构地区:[1]Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences [2]Jilin Biomedical Polymers Engineering Laboratory [3]University of Chinese Academy of Sciences [4]South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology

出  处:《Chinese Journal of Polymer Science》2019年第3期258-267,共10页高分子科学(英文版)

基  金:financially supported by the National Natural Science Foundation of China(Nos.51303176,51873209,51573178,and 51773194);the National Key Research and Development Program of China(No.2016YFB0302500)

摘  要:The effect of the architecture of poly(ethylene glycol)/poly(L-lactide)(PEG/PLLA) block copolymers on the non-isothermal crystallization behaviors of PLLA blocks was investigated by differential scanning calorimetry(DSC) and wide angle X-ray diffraction(WAXD). 1-Arm MPEG-b-PLLA and 4-arm PEG-b-PLLA(4PEG-b-PLLA) were synthesized by the ring-opening polymerization of Llactide in the presence of poly(ethylene glycol) methyl ether(MPEG) and 4-arm poly(ethylene glycol)(4PEG). 4-Arm PLLA-b-MPEG(4PLLA-b-PEG) was synthesized by coupling 4-arm PLLA and MPEG. The WAXD results indicated that the crystalline structure of PLLA blocks did not alter due to the different chain architectures. The average values of Avrami index(ˉn) were all above 4, which indicated that the nucleation mechanism of PLLA blocks was heterogeneous nucleation, regardless of the architectures. The overall crystallization rates were decreased markedly as following: MPEG-b-PLLA > 4PEG-b-PLLA > 4PLLA-b-PEG, ascribed to the different confinement by PEG blocks and to the steric hindrance of chain architectures. Therefore, the crystallization of PLLA blocks became more difficult and the crystallization activation energy of the PLLA blocks increased due to the confinement of chain architectures.The effect of the architecture of poly(ethylene glycol)/poly(L-lactide)(PEG/PLLA) block copolymers on the non-isothermal crystallization behaviors of PLLA blocks was investigated by differential scanning calorimetry(DSC) and wide angle X-ray diffraction(WAXD). 1-Arm MPEG-b-PLLA and 4-arm PEG-b-PLLA(4PEG-b-PLLA) were synthesized by the ring-opening polymerization of Llactide in the presence of poly(ethylene glycol) methyl ether(MPEG) and 4-arm poly(ethylene glycol)(4PEG). 4-Arm PLLA-b-MPEG(4PLLA-b-PEG) was synthesized by coupling 4-arm PLLA and MPEG. The WAXD results indicated that the crystalline structure of PLLA blocks did not alter due to the different chain architectures. The average values of Avrami index(ˉn) were all above 4, which indicated that the nucleation mechanism of PLLA blocks was heterogeneous nucleation, regardless of the architectures. The overall crystallization rates were decreased markedly as following: MPEG-b-PLLA > 4PEG-b-PLLA > 4PLLA-b-PEG, ascribed to the different confinement by PEG blocks and to the steric hindrance of chain architectures. Therefore, the crystallization of PLLA blocks became more difficult and the crystallization activation energy of the PLLA blocks increased due to the confinement of chain architectures.

关 键 词:Poly(L-lactide) Poly(ethylene glycol)/poly(L-lactide)block copolymer NON-ISOTHERMAL crystallization CHAIN architecture 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象