机构地区:[1]Guangzhou Special Pressure Equipment Inspection and Research Institute [2]School of Materials Science and Technology, South China University of Technology
出 处:《Chinese Journal of Polymer Science》2019年第2期189-196,共8页高分子科学(英文版)
基 金:the Guangdong Province Science and Technology projects(No.2017A040402005);Guangdong Bureau of Quality and Technical Supervision Science and Technology projects(No.2017CT30)for financial support of this work
摘 要:The SiO_2 nanoparticles were coated on the surface of graphene oxide(GO) by sol-gel method to get the SiO_2-G compound.The SiO_2-G was restored and oleophylically modified to prepare hydrophobic modified SiO_2-G(HM-SiO_2-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized(RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods.In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO_2 nanoparticles were coated on graphene oxide successfully, and HM-SiO_2-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO_2-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.The SiO_2 nanoparticles were coated on the surface of graphene oxide(GO) by sol-gel method to get the SiO_2-G compound.The SiO_2-G was restored and oleophylically modified to prepare hydrophobic modified SiO_2-G(HM-SiO_2-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized(RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods.In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO_2 nanoparticles were coated on graphene oxide successfully, and HM-SiO_2-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO_2-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.
关 键 词:GRAPHENE Modification Two components ROOM temperature vulcanized SILICONE rubber Thermal CONDUCTIVITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...