机构地区:[1]Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications [2]Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU)
出 处:《Chinese Journal of Polymer Science》2019年第1期11-17,1-10,共7页高分子科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China (Nos. 21504047, 21774061);the Six Peak Talents Foundation of Jiangsu Province (No. XCL-CXTD009);Natural Science Foundation of Jiangsu Province (No. BK20150834);Synergetic Innovation Center for Organic Electronics and Information Displays
摘 要:Rare attention has been paid to the comparison between a monomer and its corresponding polymer in terms of the optoelectronic characteristics. In this article, a model H-shaped molecule and its corresponding polymer, both of which exhibited similar properties including blue emission and solution processing, were designed and synthesized. Optoelectronic properties and various kinds of stability features, including the thermostabilities, spectral stabilities and amplified spontaneous emission characteristic of the monomer and polymer were investigated. In general, the corresponding polymer PH exhibited similar optoelectronic properties but deteriorated stabilities compared with its H-shaped monomer H-1 probably owing to the similar chemical structure but the wider molecular weight distribution and metal catalyst residue. Importantly, monomer H-1 displayed a comparable ASE threshold value with its polymer PH,suggesting that H-shaped fluorene-based small molecules may be more promising optical gain media in solid state amplifers and lasers.Rare attention has been paid to the comparison between a monomer and its corresponding polymer in terms of the optoelectronic characteristics. In this article, a model H-shaped molecule and its corresponding polymer, both of which exhibited similar properties including blue emission and solution processing, were designed and synthesized. Optoelectronic properties and various kinds of stability features, including the thermostabilities, spectral stabilities and amplified spontaneous emission characteristic of the monomer and polymer were investigated. In general, the corresponding polymer PH exhibited similar optoelectronic properties but deteriorated stabilities compared with its H-shaped monomer H-1 probably owing to the similar chemical structure but the wider molecular weight distribution and metal catalyst residue. Importantly, monomer H-1 displayed a comparable ASE threshold value with its polymer PH,suggesting that H-shaped fluorene-based small molecules may be more promising optical gain media in solid state amplifers and lasers.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...