A New Class AOR Preconditioner for L-Matrices  被引量:3

A New Class AOR Preconditioner for L-Matrices

在线阅读下载全文

作  者:Reza BEHZADI 

机构地区:[1]Department of Mathematics, College of Science, Shiraz University

出  处:《Journal of Mathematical Research with Applications》2019年第1期101-110,共10页数学研究及应用(英文版)

摘  要:Hadjidimos(1978) proposed a classical accelerated overrelaxation(AOR) iterative method to solve the system of linear equations, and discussed its convergence under the conditions that the coefficient matrices are irreducible diagonal dominant, L-matrices, and consistently orders matrices. Several preconditioned AOR methods have been proposed to solve system of linear equations Ax = b, where A ∈ R^(n×n) is an L-matrix. In this work, we introduce a new class preconditioners for solving linear systems and give a comparison result and some convergence result for this class of preconditioners. Numerical results for corresponding preconditioned GMRES methods are given to illustrate the theoretical results.Hadjidimos(1978) proposed a classical accelerated overrelaxation(AOR) iterative method to solve the system of linear equations, and discussed its convergence under the conditions that the coefficient matrices are irreducible diagonal dominant, L-matrices, and consistently orders matrices. Several preconditioned AOR methods have been proposed to solve system of linear equations Ax = b, where A ∈ R^(n×n) is an L-matrix. In this work, we introduce a new class preconditioners for solving linear systems and give a comparison result and some convergence result for this class of preconditioners. Numerical results for corresponding preconditioned GMRES methods are given to illustrate the theoretical results.

关 键 词:AOR iterative method L-MATRIX IRREDUCIBLE MATRIX spectral RADIUS PRECONDITIONER ITERATION MATRIX 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象