检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Reza BEHZADI
机构地区:[1]Department of Mathematics, College of Science, Shiraz University
出 处:《Journal of Mathematical Research with Applications》2019年第1期101-110,共10页数学研究及应用(英文版)
摘 要:Hadjidimos(1978) proposed a classical accelerated overrelaxation(AOR) iterative method to solve the system of linear equations, and discussed its convergence under the conditions that the coefficient matrices are irreducible diagonal dominant, L-matrices, and consistently orders matrices. Several preconditioned AOR methods have been proposed to solve system of linear equations Ax = b, where A ∈ R^(n×n) is an L-matrix. In this work, we introduce a new class preconditioners for solving linear systems and give a comparison result and some convergence result for this class of preconditioners. Numerical results for corresponding preconditioned GMRES methods are given to illustrate the theoretical results.Hadjidimos(1978) proposed a classical accelerated overrelaxation(AOR) iterative method to solve the system of linear equations, and discussed its convergence under the conditions that the coefficient matrices are irreducible diagonal dominant, L-matrices, and consistently orders matrices. Several preconditioned AOR methods have been proposed to solve system of linear equations Ax = b, where A ∈ R^(n×n) is an L-matrix. In this work, we introduce a new class preconditioners for solving linear systems and give a comparison result and some convergence result for this class of preconditioners. Numerical results for corresponding preconditioned GMRES methods are given to illustrate the theoretical results.
关 键 词:AOR iterative method L-MATRIX IRREDUCIBLE MATRIX spectral RADIUS PRECONDITIONER ITERATION MATRIX
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28