f-x域共偏移距道集的EEMD随机噪声压制方法  

Random noise attenuation by EEMD in common offset gathers

在线阅读下载全文

作  者:石战战[1,2] 夏艳晴 周怀来[2] 池跃龙[1,2] 庞溯[1] SHI Zhanzhan;XIA Yanqing;ZHOU Huailai;CHI Yuelong;PANG Su(The Engineering&Technical College of Chengdu University of Technology,Leshan 614000,China;College of Geophysics,Chengdu University of Technology,Chengdu 610059,China)

机构地区:[1]成都理工大学工程技术学院,四川乐山614000 [2]成都理工大学地球物理学院,四川成都610059

出  处:《煤田地质与勘探》2019年第1期187-193,199,共8页Coal Geology & Exploration

基  金:国家科技重大专项课题(2016ZX05026-001);四川省教育厅项目(16ZB0410)~~

摘  要:f-x域随机噪声压制方法面临着2个问题:叠前共炮点道集或CMP道集反射波同相轴为双曲线型,去噪同时会损害有效波;地震信号为复杂的非平稳信号,要求去噪方法具有自适应性。基于f-xEEMD的共偏移距道集随机噪声压制方法利用了共偏移距道集反射波同相轴为水平满足f-x域去噪假设条件和EEMD算法对非平稳信号的良好适应性,对f-x域每一个等频率切片做EEMD分解,并去除以高频随机噪声为主的第一个IMF分量,最后将f-x域数据反变换回t-x域,实现噪声分离。正演模拟和实际地震数据试算结果表明:该方法在压制随机噪声的同时,能够保持有效信号。There are two problems in the random noise attenuation in f-x domain:(1)Reflected waves as hyperbolic events in pre-stack CMP gather or shot gathers,de-noising will damage the effective wave;(2)Seismic signals are complex non-stationary signals,requiring that the de-noising method has the adaptivity.Aiming at these two problems,a random noise suppression method based on f-x EEMD was proposed.The method utilizes the reflected waves which are horizontal events in common offset gathers,satisfying the f-x domain de-noising assumption,and the good adaptability of EEMD algorithm to non-stationary signals.For each frequency slices in the f-x domain,signal is decomposed into a series of IMFs by EEMD,and the first IMF component which is noise dominant is removed.Finally,f-x domain data is inversely transformed back to t-x domain to realize noise separation.The theoretical trial and practical application indicate that the proposed method can suppress the random noise while maintaining the desired signal.

关 键 词:随机噪声 共偏移距道集 F-X域 EEMD 噪声压制 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象