检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于惠鸣 张智晟[1] 龚文杰 段晓燕 YU Huiming;ZHANG Zhisheng;GONG Wenjie;DUAN Xiaoyan(College of Automation and Electrical Engineering,Qingdao University,Qingdao 266071,China;State Grid Qingdao Power Supply Company,Qingdao 266002,China)
机构地区:[1]青岛大学自动化与电气工程学院,青岛266071 [2]国网青岛供电公司,青岛266002
出 处:《电力系统及其自动化学报》2019年第1期112-116,共5页Proceedings of the CSU-EPSA
基 金:国家自然科学基金资助项目(51477078);智能电网教育部重点实验室开放研究基金资助项目(2018)
摘 要:针对电力负荷非线性动态特性导致的负荷预测困难、预测精度低等问题,本文构建了深度递归神经网络短期负荷预测模型。在深度神经网络多隐层结构的基础上,深度递归神经网络增设了关联层,并以改进粒子群算法作为网络的优化学习算法,对模型权值空间进行深度优化。对某地区电网实际负荷进行预测仿真,结果表明与BP网络、深度神经网络相比,深度递归神经网络的平均绝对误差的周平均值分别降低1.61%和0.56%,验证了深度递归神经网络能够融合前馈与反馈连接,提高网络泛化能力,有效提高负荷预测精度。In view of the difficulty in load forecasting and the low prediction accuracy caused by the nonlinear dynamic characteristics of power load , a short-term load forecasting model based on deep recurrent neural network is established in this paper. Based on the deep neural network ' s multi-hidden-layer structure , a connection layer is added to the deep recurrent neural network , and an improved particle swarm algorithm is adopted as the optimization learning algorithm for the network to optimize the model ' s weight space. The actual load of a regional power grid is forecasted through simu-lations , showing that the weekly average values of mean absolute errors of deep recurrent neural network are reduced by 1.61 % and 0.56 % compared with those of BP network and deep neural network , which verifies that the deep recurrent neural network can combine the feedforward and feedback connections , improve the network ' s generalization capability , and effectively improve the accuracy of load forecasting.
关 键 词:深度神经网络 深度递归神经网络 改进粒子群优化算法 短期负荷预测 电力系统
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.106