检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王斌[1] 冯慧芬[1] 王芳[2] 秦新华 黄平[1] 党德建 赵敬 易佳音 WANG Bin;FENG Hui-fen;WANG Fang;QIN Xin-hua;HUANG Ping;DANG De -jian;ZHAO Jing;YI Jia-yin(Department of Gastroenterology,The Fifth Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China;Department of Infectious Disease,Children’s Hospital Affiliated to Zhengzhou University,Zhengzhou 450051,China;Department of Healthcare -associated Infection Control,The Fifth Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China)
机构地区:[1]郑州大学第五附属医院消化内科,河南郑州450052 [2]郑州大学附属儿童医院感染科,河南郑州450051 [3]郑州大学第五附属医院感染控制科,河南郑州450052
出 处:《中国感染控制杂志》2019年第1期12-16,共5页Chinese Journal of Infection Control
基 金:国家自然科学基金(81473030);河南省医学科技攻关普通项目(201403130);河南省卫生系统出国研修项目(2015065)
摘 要:目的通过机器学习算法,探究CatBoost模型在预测重症手足口病(HFMD)中的应用价值。方法收集郑州市某医院2014年1月—2017年6月住院部诊治的2983例HFMD患儿,使用R3.4.3软件进行数据分析,构建CatBoost模型和其他普通模型,评估CatBoost模型的预测性能。结果最终构建的CatBoost模型,预测正确率可达87.6%,人工神经网络模型位居第二(83.8%),其他(决策树、支持向量机、logistic回归、贝叶斯网络)模型预测正确率<80%。CatBoost算法模型ROC曲线下面积、灵敏度、特异度均高(分别为0.866、80.80%、92.33%),其中居前3位的预测变量依次为呕吐、肢体抖动和病原学结果。结论CatBoost模型可以用于预测重症HFMD,相比于其他传统算法,具有较高的预测正确率和诊断价值。Objective To explore the value of CatBoost model in predicting severe hand-foot-mouth disease (HFMD) by the machine learning algorithm.Methods A total of 2 983 children with HFMD diagnosed and treated in a hospital in Zhengzhou from January 2014 to June 2017 were collected,data were analyzed with R 3.4.3 software,CatBoost model and other common models were constructed,prediction performance of CatBoost model was evaluated.Results The predictive accuracy of the finally constructed CatBoost model was 87.6%,artificial neural network model ranked second (83.8%),other models (decision tree,support vector machine,logistic regression,Bayesian network) had predictive accuracy less than 80%.The area under receiver operating characteristic (ROC) curve,sensitivity,and specificity of CatBoost algorithm model were all high (0.866,80.80% and 92.33% respectively),the top three predictive variables were vomiting,limb jitter,and pathogenic results.Conclusion CatBoost model can be used to predict severe HFMD,which has higher accuracy and diagnostic value than other traditional algorithms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.75.212