基于SVM的多自由度结构非线性模型检验及参数确定  被引量:2

A method for nonlinear model validation and parameter calibration of multiple-degree-of-freedom structure based on SVM method

在线阅读下载全文

作  者:汪欣 胡可 王佐才[1,3] 任伟新[1,3] 吴枫 WANG Xin;HU Ke;WANG Zuocai;REN Weixin;WU Feng(School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,China;Anhui Transportation Holding Group Co.,Ltd.,Hefei 230088,China;Anhui Engineering Laboratory of Infrastructural Safety Inspection and Monitoring,Hefei University of Technology,Hefei 230009,China)

机构地区:[1]合肥工业大学土木与水利工程学院,安徽合肥230009 [2]安徽省交通控股集团有限公司,安徽合肥230088 [3]合肥工业大学安徽省基础设施安全检测与监测工程实验室,安徽合肥230009

出  处:《合肥工业大学学报(自然科学版)》2019年第2期215-222,共8页Journal of Hefei University of Technology:Natural Science

基  金:国家自然科学基金资助项目(51578206);安徽省重点研究和开发计划资助项目(1804a0802204);安徽省杰出青年科学基金资助项目(1708085J06);中央高校基本科研业务费专项资金资助项目(PA2017GDQT0022)

摘  要:文章提出了一种基于支持向量机(support vector machine,SVM)的非线性结构模型验证和参数确定方法。首先建立了基于结构动力响应和外激励载荷的恢复力曲面;然后利用恢复力曲面得到刚度边际谱、阻尼边际谱及非线性指标,采用主成分分析法提取结构非线性指标,利用降维指标作为训练数据训练SVM分类器,用于检测存在的非线性;最后,采用正则化最小二乘法确定了结构非线性模型参数。在数值模拟中,采用1个非线性单自由度系统和1个非线性多自由度系统来验证该方法的有效性。数值仿真结果表明,该方法是一种有效的、噪声鲁棒性强的非线性模型验证和结构参数确定方法。This paper proposes a novel method for nonlinear model validation and parameter calibration of nonlinear structures by using restoring force surface and support vector machine(SVM) method.In this study,the restoring force surface is established based on the structural dynamic responses and external excitation loads.Then the marginal spectrum and nonlinear indices are calculated by the obtained restoring force surface.Afterwards,the principal component analysis method is performed to extract the structural nonlinear indices,and the reduced dimension index is then employed as the training data to train SVM classifier which is used to detect the existed nonlinearity.Finally,the regularized least-square algorithm is conducted to update structural parameters.In the numerical simulation,a nonlinear single-degree-of- freedom system and a nonlinear multiple-degree-of-freedom system are used to verify the effectiveness of the proposed method.The numerical simulation results demonstrate that the method has great robustness against noise and is effective for nonlinear model validation and parameter calibration.

关 键 词:非线性模型检验 参数确定 恢复力曲面 支持向量机(SVM) 

分 类 号:TU311.41[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象