检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王彩云[1] 黄盼盼 胡允侃 WANG Caiyun;HUANG Panpan;HU Yunkan(College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出 处:《电波科学学报》2019年第1期60-64,共5页Chinese Journal of Radio Science
基 金:国家自然基金青年科学基金(61301211);江苏省研究生教育教学改革课题(JGZZ17_008)
摘 要:提出一种基于自适应核字典学习的合成孔径雷达(synthetic aperture radar,SAR)目标识别方法.该方法首先将SAR图像的特征信息通过核函数映射到高维度的核空间中并进行字典学习;然后根据更新后的字典动态计算稀疏度;最后依据最小重构误差准则实现SAR目标识别.在公开数据集MSTAR上的仿真实验结果表明,该方法提取到的特征信息可分度高,对SAR目标的识别具有较好的性能.A synthetic aperture radar (SAR) target recognition method based on adaptive kernel dictionary learning is proposed in order to enhance the ability of sparse representation to extract non-linear feature information. Firstly, the SAR image feature information is mapped into a high-dimensional kernel space through a kernel function, and then the dictionary is learned in the high-dimensional kernel space. Next, the sparsity is dynamically calculated according to the information of each dictionary update. Finally, the SAR target recognition is achieved by minimizing the reconstruction error. The simulation results on MSTAR data sets show that the feature information extracted by this method can be highly indexed and has better performance on SAR target recognition.
关 键 词:SAR图像 目标识别 自适应核字典学习 核稀疏 最小重构误差
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117