机构地区:[1]National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences [2]Xinxiang Innovation Center for Breeding Technology of Dwarf-Male-Sterile Wheat [3]Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences [4]Institute of Agricultural Science, The Fourth Division of the Xinjiang Production and Construction Corps
出 处:《The Crop Journal》2019年第1期30-37,共8页作物学报(英文版)
基 金:supported by the National Key Research and Development Program of China (2017YFD0101000, 2016YFD0101004);the National Natural Science Foundation of China (31771881, 31401468);the CAAS Innovation Team and the National Engineering Laboratory of Crop Molecular Breeding
摘 要:Knowledge of allelic frequencies at loci associated with kernel weight and effects on kernel weight-related traits is crucial for yield improvement in wheat. Kernel weight-related traits were evaluated in 200 Chinese winter wheat cultivars(lines) grown at the Xinxiang Experimental Station, Chinese Academy of Agricultural Sciences, Xinxiang in Henan Province, for three consecutive years from 2014 to 2016. Alleles associated with kernel weight at nine loci, TaCKX6-D1, TaCwi-A1, TaCWI-4A, TaGS1a, TaGS5-A1, TaGS3-3A, TaGW2-6A, TaSus2-2B, and TaTGW6-A1, were determined for all cultivars(lines). ANOVA showed that genotypes, years and their interactions had significant effects on thousand-kernel weight(TKW), kernel length(KL) and kernel width(KW). The overall mean frequencies of alleles conferring high and low TKW at the nine loci were 65.9% and 33.4%, with the ranges of 37.0%–85.0% and 13.5%–63.0% for single loci. The frequencies of high-TKW alleles were over 50.0% at eight of the loci. Genotypes at each locus with the high-TKW allele had higher TKW than those with the low-TKW allele. The high-TKW allele Hap-H at the TaSus2-2B locus can be preferably used to increase grain yield due to its high TKW(49.32 g). A total of 18 main allelic combinations(ACs) at nine loci were detected. Three ACs(AC1–AC3) had significantly higher TKW than AC6 with high-TKW alleles at all nine loci even though they contained some low-TKW alleles. This indicated that other loci controlling kernel weight were present in the high-TKW cultivars. This work provides important information for parental selection and marker-assisted selection for breeding.Knowledge of allelic frequencies at loci associated with kernel weight and effects on kernel weight-related traits is crucial for yield improvement in wheat. Kernel weight-related traits were evaluated in 200 Chinese winter wheat cultivars(lines) grown at the Xinxiang Experimental Station, Chinese Academy of Agricultural Sciences, Xinxiang in Henan Province, for three consecutive years from 2014 to 2016. Alleles associated with kernel weight at nine loci, TaCKX6-D1, TaCwi-A1, TaCWI-4A, TaGS1a, TaGS5-A1, TaGS3-3A, TaGW2-6A, TaSus2-2B, and TaTGW6-A1, were determined for all cultivars(lines). ANOVA showed that genotypes, years and their interactions had significant effects on thousand-kernel weight(TKW), kernel length(KL) and kernel width(KW). The overall mean frequencies of alleles conferring high and low TKW at the nine loci were 65.9% and 33.4%, with the ranges of 37.0%–85.0% and 13.5%–63.0% for single loci. The frequencies of high-TKW alleles were over 50.0% at eight of the loci. Genotypes at each locus with the high-TKW allele had higher TKW than those with the low-TKW allele. The high-TKW allele Hap-H at the TaSus2-2B locus can be preferably used to increase grain yield due to its high TKW(49.32 g). A total of 18 main allelic combinations(ACs) at nine loci were detected. Three ACs(AC1–AC3) had significantly higher TKW than AC6 with high-TKW alleles at all nine loci even though they contained some low-TKW alleles. This indicated that other loci controlling kernel weight were present in the high-TKW cultivars. This work provides important information for parental selection and marker-assisted selection for breeding.
关 键 词:Allelic frequency Allelic VARIATION Functional MARKERS TRITICUM AESTIVUM
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...