检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖荣宝[1] 金凤[1] 魏标 金晓艳[1] 吴言宁[2] 胡金玉 刘俊龙[1] 师瑞娟[1] 王畅[1] LIAO Rong-bao;JIN Feng;WEI Biao;JIN Xiao-yan;WU Yan-ning;HU Jin-yu;LIU Jun-long;SHI Rui-juan;WANG Chang(School of Chemical and Material Engineering,Fuyang Normal University,Anhui Fuyang 236037;School of Physics and Electronic Engineering,Fuyang Normal University,Anhui Fuyang 236037,China)
机构地区:[1]阜阳师范学院化学与材料工程学院,安徽阜阳236037 [2]阜阳师范学院物理与电子工程学院,安徽阜阳236037
出 处:《广州化工》2019年第3期121-123,共3页GuangZhou Chemical Industry
基 金:国家自然科学基金项目(51402052);安徽省教育厅自然科学研究重点项目(KJ2018A0333; KJ2018ZD037);阜阳师范学院科研基金项目(KYTD201710; 2015FSKJ04ZD; 2013FSKJ05ZD; 2016PPJY14)
摘 要:基于时间、空间、动量、能量存在最小基元的假设,证明了定义域区间内任意态函数均可写成正交归一动量本征态叠加的结论。不同于Dirac位置本征态的定义,基于量子化假设重新定义了位置本征态,讨论了位置本征态和位置叠加态的归一性。基于动量和坐标的定义域依据傅立叶变换给出了动量空间和坐标空间的正交基函数系。据此得出,在某些方面,重新定义的位置本征态优于传统位置本征态。Under the condition that there is a minimum unit of time, length, momentum and energy, the state function can be constructed by orthonormal momentum eigenstates.The traditional Dirac position eigenstate in quantum mechanics was redefined according to the assumption that there was a minimum unit of length, and the normalization property of position eigenstate and superposition state was discussed.The orthogonal eigenfunctions were presented based on the quantization hyposesis of momentum and length.In addition, it was concluded that, in some aspects, the redefined position eigenstate had some advantages compared with traditional position eigenstate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254