检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑银环 王备战[2] 王嘉珺[2] 陈凌宇 洪清启[2] ZHENG Yinhuan;WANG Beizhan;WANG Jiajun;CHEN Lingyu;HONG Qingqi(Department of Computer Science and Engineering,Xiamen Institute of Technology,Xiamen,Fujian 361021,China;Software School,Xiamen University,Xiamen,Fujian 361001,China)
机构地区:[1]厦门工学院计算机科学与工程系,福建厦门361021 [2]厦门大学软件学院,福建厦门361001
出 处:《计算机工程与应用》2019年第4期173-178,共6页Computer Engineering and Applications
基 金:福建省中青年教师教育科研项目(No.JZ160238);国家自然科学基金(No.61502402);福建省自然科学基金(No.2015J05129)
摘 要:为解决在复杂环境下,如姿势不同、光照条件以及遮挡等因素导致传统人脸特征点检测算法的精度大幅度下降的问题,在特征点检测理论知识以及研究现状的基础上,针对传统卷积神经网络模型在处理人脸特征点检测问题时的不足之处,提出基于小滤波器的深卷积神经网络。算法引入小滤波器思想和以拓展"网络深度"优先的深层卷积神经网络模型,针对人脸特征点检测重新设计训练,提高了算法的有效性与适用性。通过将算法应用于ALFW和AFW人脸数据集上预测5点人脸特征点问题,并与其他多个经典算法进行对比分析,结果表明:基于小滤波器的深卷积神经网络在预测人脸5点特征点问题上有更好的准确性和鲁棒性。To solve the problem in a complex environment,such as different positions,light conditions,and barrier factors which lead to a big drop in precision by using traditional facial feature point detection algorithms,the research on the basis of theoretical knowledge is made,and the deep convolution neural network based on small filter is put forward.The algorithm introduces the small filter thought and depth-first network into deep convolution neural network model,redesigns the training in view of the facial feature points detection,and improves the effectiveness and applicability of the algorithm.By applying the algorithm in ALFW and AFW face datasets to predict five points of facial feature,and compared with several other classical algorithms analysis results,it shows that the deep convolution neural network based on the small filter in the prediction of facial feature points at five issues has better accuracy and robustness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145