检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟利民 李丽娟[1,2] 杨京 梁彬[1,2] 程建春 刘翔雄[3] ZHONG Limin;LI Lijuan;YANG Jing;LIANG Bin;CHENG Jianchun;LIU Xiangxiong(Institute of Acoustic,Nanjing University,Nanjing 210093,China;Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China;Huachen Precision Equipment (Kunshan) Co.,Ltd.,Kunshan 215337,China)
机构地区:[1]南京大学声学研究所,南京210093 [2]人工微结构科学与技术协同创新中心,南京210093 [3]华辰精密装备(昆山)股份有限公司,昆山215337
出 处:《应用声学》2019年第2期151-158,共8页Journal of Applied Acoustics
基 金:国家自然科学基金项目(11374157)
摘 要:在高精度金属材料磨削加工中,刀具即砂轮的状态对加工效率和加工质量具有重要的影响。钝化程度较高的砂轮不适于加工精密工件,需提前预警并修整更换砂轮。该文提出一种通过磨削声发射信号来检测砂轮钝化状态的方法。首先,对于采集到的信号进行小波软阈值降噪。然后,将其分割成多个有重叠的帧,并提取每帧信号的8个特征组成声发射数据集。最后,通过分层Dirichlet过程-隐半马尔可夫模型来建立声发射数据集和不同的砂轮钝化状态之间的非线性关系,旨在识别砂轮钝化状态。结果表明,上述检测方法能有效识别砂轮的不同钝化状态并能对整个加工过程中的砂轮钝化程度进行自动划分,其在测试数据集上的准确率达到93.7%,可以为实际工业应用提供理论指导。In the grinding process,the different blunt states of the grinding wheel significantly affect the processing efficiency and quality.A seriously blunted grinding wheel would even lead to the occurrence of waste products.Therefore,attention has been aroused on how to monitor the blunt state of the grinding wheel in the grinding process.In this paper,an online monitoring method based on acoustic emission signal is proposed.Firstly,the signal collected by the acoustic emission sensor is de-noised by the wavelet soft threshold denoising method,following by the segmented analysis for dividing the denoised acoustic emission signal into multiple overlapping segments.In the second step,by setting a threshold voltage,the acoustic emission hits are intercepted for each frame of acoustic emission signal and 8 statistical features of each acoustic emission hit are extracted.The average value of 8 dimensional features of the acoustic emission hits in the frame is calculated to form the acoustic emission vector instead of the frame acoustic emission signal.In this way,the acoustic emission vectors of all frame acoustic emission signals are acquired to constitute the acoustic emission data set.Finally,the hierarchical Dirichlet processs-implicit semi Markov model(HDP-HSMM)is employed to build a nonlinear relationship between the acoustic emission data set and different grinding wheel blunt level.Good agreement is observed between the HDP-HSMM trained by the acoustic emission data set and our expectations,evidenced by the 93.7%accuracy of the trained model on the test data set.The results strongly demonstrate that the method can effectively identify the different blunt state of grinding wheel accurately,which is of great value for industrial applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28