基于变分模态分解的语音情感识别方法  被引量:5

Speech emotion recognition based on variational mode decomposition

在线阅读下载全文

作  者:王玮蔚 张秀再[1,2] WANG Weiwei;ZHANG Xiuzai(Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology CICAEET,Nanjing 210044,China)

机构地区:[1]南京信息工程大学电子与信息工程学院,南京210044 [2]江苏省大气环境与装备技术协同创新中心,南京210044

出  处:《应用声学》2019年第2期237-244,共8页Journal of Applied Acoustics

基  金:江苏省自然科学青年基金项目(BK20141004);国家自然科学青年基金项目(11504176;61601230);江苏高校优势学科建设工程资助项目

摘  要:针对传统语音情感特征参数在进行情感分类时性能不佳的问题,该文提出了一种基于变分模态分解的语音情感识别方法。情感语音信号首先由变分模态分解提取固有模态函数,然后对所选主导固有模态函数进行重新聚合,再提取梅尔倒谱系数和各固有模态函数的希尔伯特边际谱。为了验证该文提出的特征性能,选用两种语音数据库(EMODB、RAVDESS)进行实验,按该文方法提取特征后使用极限学习机进行语音情感分类识别。实验结果表明:相比基于经验模态分解和集合经验模态分解的语音情感特征,该文提出的特征有更好的识别性能,验证了该方法的实用性。In view of the problem of poor performance of traditional speech emotion feature parameters in emotion classification,this paper proposes a speech emotion recognition method based on variational mode decomposition(VMD).The emotion speech signal is first extracted by the VMD into the intrinsic mode functions(IMF),then the selected dominant IMFs are re-aggregated,after that the Mel frequency cepstral coefficents(MFCC)and the Hilbert marginal spectrum of each IMF are extracted.In order to verify the performance of the features proposed in this paper,two speech databases(EMODB、RAVDESS)are selected for the experiment.After extracting features according to the method of this paper,the extreme learning machine(ELM)is used for speech emotion classification and recognition.The experimental results show that compared with the emotion features based on empirical mode decomposition(EMD)and ensemble empirical mode decomposition(EEMD),the features proposed in this paper have better recognition performance,and the practicability of the method is verified.

关 键 词:变分模态分解 MEL倒谱系数 希尔伯特谱 极限学习机 

分 类 号:TN912.34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象