机构地区:[1]Nuclear Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM) [2]Department of Physics, Faculty of Science, Gombe State University [3]Centre for Frontier Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM)
出 处:《Nuclear Science and Techniques》2019年第3期82-96,共15页核技术(英文)
基 金:supported by Universiti Kebangsaan Malaysia and Lynas Advanced Material Plant under Grant Numbers GGPM-2017-084 and ST-2017-012,respectively
摘 要:In this study, the activity concentrations of ^(226)Ra,^(232)Th,^(222)Rn, and ^(40)K, emanation fractions(P),equilibrium equivalent concentration(EEC), and mass exhalation rates(E_m) of radon released from building materials used in Malaysia were studied using gamma-ray spectrometer with HPGe detector. Radiological parameters[activity concentration index(ACI), indoor air-absorbed dose rate(D_(in)), annual effective dose(AED_(in)) from external and internal(E_(Rn)), soft tissues(H_(ST)) and lung(H_L), and effective dose equivalent(H_(eff))] were estimated to evaluate radiological hazards due to the use of these building materials: sand, cement, gravel, bricks, tiles, fly ash, white cement, and ceramic raw materials. The measured P, EEC,and E_m vary from 10 to 30%, 0.9 to 22 Bq m^(-3), and 33 to 674 mBq h^(-1) kg^(-1), respectively, while the calculated ACI and AED_(in) vary from 0.1 ± 0.01 to 2.1 ± 0.1 and 0.1 ± 0.01 to 2.4 ± 0.6 mSv y^(-1), respectively. On the other hand, the internal annual effective dose ranges from 0.1 to 1.4 mSv y^(-1). The estimated radiological risk parameters were below the recommended maximum values, and radiological hazards associated with building materials under investigation are therefore negligible.In this study, the activity concentrations of ^(226)Ra,^(232)Th,^(222)Rn, and ^(40)K, emanation fractions(P),equilibrium equivalent concentration(EEC), and mass exhalation rates(E_m) of radon released from building materials used in Malaysia were studied using gamma-ray spectrometer with HPGe detector. Radiological parameters[activity concentration index(ACI), indoor air-absorbed dose rate(D_(in)), annual effective dose(AED_(in)) from external and internal(E_(Rn)), soft tissues(H_(ST)) and lung(H_L), and effective dose equivalent(H_(eff))] were estimated to evaluate radiological hazards due to the use of these building materials: sand, cement, gravel, bricks, tiles, fly ash, white cement, and ceramic raw materials. The measured P, EEC,and E_m vary from 10 to 30%, 0.9 to 22 Bq m^(-3), and 33 to 674 mBq h^(-1) kg^(-1), respectively, while the calculated ACI and AED_(in) vary from 0.1 ± 0.01 to 2.1 ± 0.1 and 0.1 ± 0.01 to 2.4 ± 0.6 mSv y^(-1), respectively. On the other hand, the internal annual effective dose ranges from 0.1 to 1.4 mSv y^(-1). The estimated radiological risk parameters were below the recommended maximum values, and radiological hazards associated with building materials under investigation are therefore negligible.
关 键 词:Indoor radon EMANATION fraction Equilibrium EQUIVALENT concentration Mass EXHALATION rate Annual EFFECTIVE DOSE EFFECTIVE DOSE EQUIVALENT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...