检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马楠 马玉辉 张金玲 杨启安 吴树宽 MA Nan;MA Yuhui;ZHANG Jinling;YANG Qi’an;WU Shukuan(College of Earth Sciences, Jilin University, Changchun, Jilin 130061, China;The Fifth Institute of Geological and Mineral Survey in Qinghai Province, Xining, Qinghai 810000, China)
机构地区:[1]吉林大学地球科学学院,吉林长春130061 [2]青海省第五地质矿产勘查院,青海西宁810000
出 处:《中国锰业》2019年第1期72-75,共4页China Manganese Industry
基 金:中国地质调查局地质大调查项目(12120111086020);青海省地质勘查基金项目(青国土资矿[2012]209号)
摘 要:矿石体重值为储量估算中的重要参数。以东昆仑夏日哈木铜镍矿床小体重测试数据为基础,运用数学地质原理及SPSS软件探讨了小体重值与Ni、Cu、Co元素品位之间的关系,建立了以Ni、Co元素品位与小体重值的回归模型。预测体重与实际测试体重平均误差为6.08%,建立的回归模型可为储量计算提供科学依据。The ore density is a crucial index to evaluate the ore reserves. In this study, the ore density data of Xiarihamu Cu-Ni deposit in eastern Kunlun Mountains has been used to analyze the relationship between the ore density and element grade of Ni, Cu and Co by applying mathematical geology principles and SPSS statistical analysis. As a result, a regression model has been proposed to predict ore density according to the element grade of Ni and Co. By using this regression model, the relative error of predicted ore density is about 6.08%. It is thus concluded that the proposed regression model is capable of ore reserve prediction for future applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145