基于P-IFourier观测矩阵的宽带压缩感知方法  被引量:3

Broadband compressed sensing method based on P-IFourier observation matrix

在线阅读下载全文

作  者:刘洋[1] 任清华[1,2] 孟庆微 苏玉泽[1] Liu Yang;Ren Qinghua;Meng Qingwei;Su Yuze(College of Information & Navigation, Air Force Engineering University, Xi'an 710077, China;CETC Key Laboratory of Aerospace Information Applications, Shijiazhuang 050081, China)

机构地区:[1]空军工程大学信息与导航学院,西安710077 [2]中国电子科技集团航天信息应用技术重点实验室,石家庄050081

出  处:《计算机应用研究》2019年第4期1189-1192,共4页Application Research of Computers

基  金:中国电子科技集团公司航天信息应用技术重点实验室新技术研究高校合作项目(KX162600022);国家自然科学基金资助项目(61401499)

摘  要:针对压缩感知理论在宽带频谱感知领域应用时重构精度差的问题,根据平稳信号在频域所表现出的稀疏特性,提出了一种基于P-IFourier(partial-inverse Fourier)观测矩阵的宽带压缩频谱感知方法。新方法首先将频谱感知问题建模为一个典型的压缩感知问题,利用相关性能优良的标准正交傅里叶基构造观测矩阵,使观测矩阵具有良好的重构性能和重构精度。仿真结果表明,相比于高斯随机观测矩阵和嵌入式混沌序列—循环Toeplitz结构观测矩阵,该方法在较低信噪比环境下能够明显降低信号重构的均方误差,并且在相同条件下的重构概率得到了明显改善。Aiming at the problem of poor precision in the application of compressed sensing theory in the field of broadband spectrum sensing,and according to the sparse characteristics of the stationary signal in the frequency domain,this paper developed a broadband compression spectrum sensing method based on P-IFourier(partial-inverse Fourier)observation matrix.The new method translated the spectrum sensing problem into a typical compressed sensing problem,and used the standard orthogonal Fourier basis observation matrix which has the excellent incoherence performance to build the observation matrix in order to have good reconstruction performance and reconstruction precision.The simulation results show that compared with the Gaussian random observation matrix and the embedded chaotic sequence-cyclic Toeplitz structure observation matrix,this method can significantly reduce the mean square error of signal reconstruction in the lower SNR environment,and under the same conditions it can significantly improve the probability of reconstruction.

关 键 词:宽带频谱感知 压缩感知 观测矩阵 傅里叶基 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象