数据驱动的配电开关设备交互式诊断平台  被引量:15

Data-driven and interactive fault diagnosis of distribution switches

在线阅读下载全文

作  者:陈国炎 李俊均 陈颖[2] 梅生伟[2] CHEN Guo-yan;LI Jun-jun;CHEN Ying;MEI Sheng-wei(Power Testing and Research Institute,Guangzhou Power Supply Bureau Co.Ltd.,China Southern Power Grid,Guangzhou 100142,China;Department of Electrical Engineering,Tsinghua University,Beijing 100084,China)

机构地区:[1]中国南方电网广州供电局电力试验研究院,广东广州100142 [2]清华大学电机系,北京100084

出  处:《电工电能新技术》2019年第3期10-17,共8页Advanced Technology of Electrical Engineering and Energy

基  金:国家自然科学基金项目(51477081);广州供电局有限公司科技项目(080037KK52160010)

摘  要:高效和准确的设备缺陷诊断有助于提升配电网运行可靠性和安全性。受益于信息化建设,配电设备到货抽检、型式试验、在线监测等环节积累了大量检测大数据,奠定了数据挖掘和智能诊断的基础。为了满足配电设备智能运维需求,本文提出了一种大数据驱动的配电开关设备故障交互式诊断方法。利用设备的物理模型、历史故障诊断结果、在线监测数据以及仿真结果,所提方法挖掘故障表征与潜在缺陷间的关联关系,并训练贝叶斯网络,实现设备缺陷推理。进一步,根据试验人员的反馈调整诊断结果,提出设备故障的交互式诊断方法,通过动态修正推理模型,提升检测准确性。实际案例测试说明所提方法的有效性。Efficient and accurate device fault diagnosis helps to improve the reliability and safety of the distribution network.Benefiting from the development of information technology,a large amount of data has been accumulated in sampling inspection,type test,and online monitoring,laying the foundation of data mining and intelligent diagnosis.To meet the requirement of intelligent operating and maintenance of the distribution network,a data-driven and interactive diagnosis method of distribution switches is proposed.Using the physical model,historical fault diagnosis results,on-line monitoring data and simulation results,the proposed method excavates the relationship between fault representation and potential defects and trains Bayesian network to realize equipment defect reasoning.Furthermore,the diagnosis results are adjusted according to the feedback of the test personnel,and an interactive diagnosis method of equipment fault is proposed,which improves the detection accuracy by dynamically modifying the reasoning model.Practical case tests illustrate the effectiveness of the proposed method.

关 键 词:配电开关 贝叶斯网络 关联规则 

分 类 号:TM769[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象