基于气象参数预测的输电线路输送容量概率模型研究  被引量:11

Research on transmission line probability model based on meteorological parameter prediction

在线阅读下载全文

作  者:林世治 温步瀛[1] 张斌[1] LIN Shi-zhi;WEN Bu-ying;ZHANG Bin(College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350116,China;Department of Electric Power Engineering,Fujian College of Water Conservancy and Electric Power,Sanming 366000,China)

机构地区:[1]福州大学电气工程与自动化学院,福建福州350116 [2]福建水利电力职业技术学院电力工程系,福建三明366000

出  处:《电工电能新技术》2019年第3期56-62,共7页Advanced Technology of Electrical Engineering and Energy

基  金:国家自然科学基金项目(51707040)

摘  要:传统的输电线路输送容量是在保守天气条件下确定,未考虑到实际运行的环境温度和风速等其他气象参数,这可能使输电线路输送能力未得到充分的利用。而动态的载流量计算通过考虑线路周围的实际运行天气条件来确定输电线路的实际载流能力,从而提高线路的输电效率。本文提出一种基于载流量密度函数的概率建模的动态增容研究方法,采用粒子群优化的核极限学习机(PSO-KELM)对某地区的历史气象数据进行统计并预测,通过算例分析,可知该方法的预测效果较好,故将预测的数据作为概率模型的源数据。通过在某地区的应用分析表明,在用电高峰期,该方法可提高输电线路的载流量,且能确保输电线路的安全可靠性。Traditional transmission capacity of electric transmission line is determined based on conservative weather conditions,without considering the actual operating environment temperature,wind speed and other meteorological parameters,which may result in underutilized transmission capacity of transmission line.Dynamic current-carrying capacity calculation determines the actual carrying capacity of transmission lines by considering the actual weather conditions around the line to improve the efficiency of transmission lines.In this paper,the historical meteorological data of a certain area are fitted by particle swarm optimization-kernel extreme learning machine (PSO-KELM).The data obtained from the forecast is the source of the probability model.And a research method of dynamic capacity increase based on the probability model of the current density function is proposed.By analyzing the application in certain area,the method shows that the carrying capacity of transmission lines can be increased appropriately at power consumption peaks and can ensure the safety and reliability of transmission lines.

关 键 词:动态载流量 粒子群优化 核极限学习机 概率建模 动态增容 

分 类 号:TM751[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象