自适应谱减声发射消噪及轴承故障诊断  被引量:3

Adaptive Acoustic Emission Noise Elimination and Bearing Fault Diagnosis

在线阅读下载全文

作  者:朱望纯[1] 程浩 高海英[1] ZHU Wangchun;CHENG Hao;GAO Haiying(School of Electrical Engineering and Automation,Guilin University of Electronic Science andTechnology,Guilin 541004,China)

机构地区:[1]桂林电子科技大学电子工程与自动化学院,广西桂林541004

出  处:《电子科技》2019年第4期16-19,23,共5页Electronic Science and Technology

基  金:桂林电子科技大学研究生教育创新计划(2017YJCX104)~~

摘  要:对轴承进行声发射信号分析时,环境噪声会使信号能量波动,从而导致后期故障诊断失误。引入谱减法可以对声发射信号进行预先消噪,增强声信号的稳定性。但是谱减法对非平稳信号的处理性能不足,需对其进行谱减系数修正,并利用遗传算法对谱减系数(m,λ)全局优化。实验结果表明,自适应谱减法能够得到更优质的谱减系数,并有效的消除相对小波包能量的异常波动。各种故障类型的能量特征经支持向量机训练后,准确率均能达到92%左右。When acoustic emission signals are analyzed for bearings,environmental noise causes signal energy to fluctuate,resulting in misdiagnosis of late failures.To solve the problem,a spectral subtraction method was introduced to pre-noise the acoustic emission signal to enhance the stability of signal.In view of the lack of processing performance of spectral subtraction for non-stationary signals,spectral subtraction coefficients were modified and genetic algorithm was used to optimize the spectral subtraction coefficients(m,λ)globally.Experiment showed that the adaptive spectral subtraction method could obtain better spectral subtraction coefficients,and the fluctuation of wavelet packet energy feature could be eliminated.After the SVM training for the energy features of various bearing faults,the accuracy rate could reach about 92%.

关 键 词:故障诊断 声发射 谱减法 遗传算法 小波包变换 支持向量机 

分 类 号:TP368.1[自动化与计算机技术—计算机系统结构] TM611.22[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象