检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任婷玉 梁中耀[1] 陈会丽 刘永[1] REN Tingyu;LIANG Zhongyao;CHEN Huili;LIU Yong(College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences Ministry of Education,Peking University, Beijing 100871)
机构地区:[1]北京大学环境科学与工程学院水沙科学教育部重点实验室,北京100871
出 处:《北京大学学报(自然科学版)》2019年第2期335-341,共7页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:国家自然科学基金(51779002)资助
摘 要:构建耦合自组织映射神经网络(SOFM)和随机森林(RF)的方法,对中国63个湖泊11年的9种水质指标(5110条数据)进行模式识别。首先采用SOFM对湖泊进行聚类,以识别污染状况,然后采用RF分析水质指标对湖泊类别的决定效果,以确定代表性指标。SOFM的结果显示,湖泊可以按污染程度分为3类。RF的结果发现,在分类准确率为80%时,根据高锰酸盐指数和叶绿素a浓度即可判定湖泊污染程度。该方法可从庞杂的数据中识别出反映水体污染特征的水质指标,为快速认知水体污染状况及选取监测指标提供参考。The self-organizing feature map (SOFM) and random forest (RF) method were integrated to recognize water quality patterns of nine water quality indicators for 63 lakes in China for 11 years (5110 data). The SOFM was built firstly to cluster lakes to identify the pollution conditions. Then, the RF was used to explore the good-of-fitness of water quality variables on the clustering result and to determine the important water quality indicators. The result of SOFM shows that the lakes can be clustered into three types. And the result of RF shows that permanganate index and chlorophyll a can determine the pollution condition when the classification accuracy is 80%. The integrated method can identify the water quality indicators reflecting the pollution conditions from complex data. In practice, the method can be used to determine the pollution conditions and direct the monitoring indicators.
关 键 词:模式识别 水质污染 自组织映射神经网络 随机森林
分 类 号:X524[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28