检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘久彪[1] LIU Jiubiao(Co-Innovation Center for Computable Modeling in Management Science,Tianjin University of Finance Economics,Tianjin 300222,China)
机构地区:[1]天津财经大学管理可计算建模协同创新中心,天津300222
出 处:《吉林大学学报(理学版)》2019年第2期387-392,共6页Journal of Jilin University:Science Edition
基 金:国家社会科学基金(批准号:16BJY162)
摘 要:针对当前空间数据库聚类方法未考虑降维后的距离特征反向结果,导致空间数据分量失真,存在聚类精度低、耗时长的问题,提出一种空间数据库反向最近邻聚类方法.首先,通过选取训练样本集实现核矩阵的特征分解,获得其距离特征修正值去除初始值的影响;然后,根据核主成分分析(KPCA)降维并结合降维后的距离特征反向结果,利用反向最近邻聚类方法与扩展的部分失真搜索法相结合,实现空间数据的聚类;最后利用选定的聚类中心对数据集进行计算,计算数据集第一维分量与聚类中心第一维分量之间的失真,得到反向最近邻,直至所有空间数据均找到所属类别,最终完成空间数据库反向最近邻聚类.实验结果表明,该方法提高了空间数据的聚类精度,减少了空间数据聚类所用时间.Aiming at the problem that the current spatial database clustering method did not consider the inverse result of the distance feature after dimensionality reduction,which led to the distortion of spatial data components,the clustering accuracy was low and the time-consuming was long,the author proposed a reverse nearest neighbor clustering method of spatial database.Firstly,the feature decomposition of the kernel matrix was realized by selecting the training sample set,and the distance feature correction value was obtained to remove the influence of initial value.Secondly,according to dimensionality reduction of kernel principal component analysis(KPCA)combined with the inverse result of distance feature after dimensionality reduction,the inverse nearest neighbor clustering method was combined with the extended partial distortion search method to realize spatial data clustering.Finally,the data set was calculated by using the selected clustering center,the distortion between the first dimension component of the data set and the first dimension component of the clustering center was calculated,the reverse nearest neighbor was obtained until all spatial data found the category,and the reverse nearest neighbor clustering of spatial database was completed.The experimental results show that the method improves the clustering accuracy of spatial data and reduces the time used for spatial data clustering.
关 键 词:空间数据库 空间距离 数据修正 降维 反向最近邻 聚类方法
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229