EV模型中参数的加权弦估计及其极限性质  被引量:1

The weighted chord estimators and its limit properties among parameters in the liner EV Model

在线阅读下载全文

作  者:张文强 李开灿 ZHANG Wen-qiang;LI Kai-can(College of Mathematics and Statistics, Hubei Normal University,Huangshi 435002,China)

机构地区:[1]湖北师范大学数学与统计学院,湖北黄石435002

出  处:《湖北师范大学学报(自然科学版)》2019年第1期46-53,共8页Journal of Hubei Normal University:Natural Science

基  金:国家自然科学基金(11471105)

摘  要:在同时考虑自变量和因变量的测量误差的情况下,研究了变系数线性EV模型中参数的加权弦估计量.并且在较弱的条件下,证明了加权弦估计量具有强收敛和依分布收敛于标准正态分布的极限性质.we research the weighted chord estimators of parameters in the EV model, which is Linear structure with variational coefficients, with both the measurement errors of the independent variables and the response variables taken into account. Under some mild conditions, we proved that the weighted chord estimators have strong consistency, and they convergence standard normal distribution in distribution.

关 键 词:线性结构 EV模型 加权弦估计量 极限性质 

分 类 号:O212.4[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象