检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴亚春[1] 杨超 骆志高[1] Dai Yachun;Yang Chao;Luo Zhigao
机构地区:[1]江苏大学机械工程学院
出 处:《机械制造》2019年第3期68-70,共3页Machinery
基 金:镇江市产学研项目(编号:1721110159)
摘 要:利用反向传播神经网络的可预测性,基于Matlab软件进行压制成型工艺参数优化。以成型温度、成型压力、成型时间及升温速率这四个工艺参数为输入因素,以结合强度、摩擦因数和磨损量这三个性能评价指标为输出参数,建立反向传播神经网络模型,进行训练学习与仿真计算,并进行检验。通过这一反向传播神经网络模型,可以预测不同工艺参数组合下的压制成型制品性能评价指标。通过研究确认,当成型温度为332.32~348.04℃,成型压力为9.39MPa^9.84MPa,成型时间为48.87~51.18min,升温速率为5.86~6.14℃/min时,压制成型的金属塑料自润滑复合材料综合性能最佳。Based on the predictability of BP neural network, the parameters of pressure molding process were optimized based on Matlab software. Four process parameters i.e. molding temperature, molding pressure, molding time and heating rate were taken as input factors, and three performance evaluation indexes i.e. bonding strength, friction factor and wear extent were taken as output parameters to establish a BP neural network model for training & learning and for simulation & calculation and testing as well. Through this BP neural network model, it is possible to predict the performance evaluation index of pressure molding products under different combinations of process parameters. Through investigation, it is confirmed that when the molding temperature is 332.32~348.04 ℃, the molding pressure is 9.39 MPa^9.84 MPa, the molding time is 48.87~51.18 min, and the heating rate is 5.86~6.14 ℃/min, the metal/plastic self=lubricating composite material made by pressure molding provides the best combination properties.
分 类 号:TH163[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249