检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆海霞 何江 刘立 LU Haixia;HE Jiang;LIU Li
机构地区:[1]兰州大学资源环境学院 [2]中国人民解放军61363部队 [3]中国人民解放军61243部队
出 处:《科技创新与应用》2019年第11期27-30,共4页Technology Innovation and Application
摘 要:文章分别使用基于像元和基于对象的KNN分类器算法对1024*1024像元大小的宁夏中卫市地区15m空间分辨率Landsat8融合影像进行分类,比较二者分类效率和准确率,探讨其在影像分类上的不同。研究表明无论是基于对象还是基于像元的KNN分类器算总体分类精度都在90%以上。但基于对象的KNN分类器算法相比基于像元的总体分类精度提高1.9%,Kappa系数提高0.026。且使用相同的训练样本进行训练和分类,基于对象的KNN分类器算法仅耗时0.281秒,而基于像元的KNN分类器算法耗时53分7.275秒。This paper uses the pixel-based and object-based KNN classifier algorithm to classify the 15m spatial resolution Landsat8 fusion image of Ningxia Zhongwei City with a 1024*1024pixel size,compare the classification efficiency and accuracy,and explore its image classification.The research shows that the overall classification accuracy of both the object-based and pixel-based KNN classifiers is above 90%.However,the object-based KNN classifier algorithm improves the overall classification accuracy by 1.9%and the Kappa coefficient by 0.026.And using the same training samples for training and classification,the object-based KNN classifier algorithm only takes 0.281 seconds,while the pixel-based KNN classifier algorithm takes 53 minutes and 7.275 seconds.
分 类 号:K90[历史地理—人文地理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.113